Abstract

Over the past decades, the buckling instability of layered materials has been the subject of analytical, experimental, and numerical research. These systems have traditionally been considered with stress-free surfaces, and the influence of surface pressure is understudied. In this study, we developed a finite element model of a bilayer experiencing compression, and found that it behaves differently under surface pressure. We investigated the onset of buckling, the initial wavelength, and the post-buckling behavior of a bilayer system under two modes of compression (externally applied and internally generated by growth). Across a wide range of stiffness ratios, 1 < μfs < 100, we observed decreased stability in the presence of surface pressure, especially in the low-stiffness-contrast regime, μfs < 10. Our results suggest the importance of pressure boundary conditions for the stability analysis of bilayered systems, especially in soft and living matter physics, such as folding of the cerebral cortex under cerebrospinal fluid pressure, where pressure may affect morphogenesis and buckling patterns.

References

1.
Cao
,
Y.
, and
Hutchinson
,
J. W.
,
2012
, “
From Wrinkles to Creases in Elastomers: The Instability and Imperfection-Sensitivity of Wrinkling
,”
Proc. R. Soc. A.
,
468
(
2137
), pp.
94
115
.
2.
Budday
,
S.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2014
, “
The Role of Mechanics During Brain Development
,”
J. Mech. Phys. Solids
,
72
, pp.
75
92
.
3.
Sultan
,
E.
, and
Boudaoud
,
A.
,
2008
, “
The Buckling of a Swollen Thin Gel Layer Bound to a Compliant Substrate
,”
ASME J. Appl. Mech.
,
75
(
5
), p.
051002
.
4.
Sun
,
J.-Y.
,
Xia
,
S.
,
Moon
,
M.-W.
,
Oh
,
K. H.
, and
Kim
,
K.-S.
,
2012
, “
Folding Wrinkles of a Thin Stiff Layer on a Soft Substrate
,”
Proc. R. Soc. A.
,
468
(
2140
), pp.
932
953
.
5.
Cao
,
Y.-P.
,
Zheng
,
X.-P.
,
Jia
,
F.
, and
Feng
,
X.-Q.
,
2012
, “
Wrinkling and Creasing of a Compressed Elastoplastic Film Resting on a Soft Substrate
,”
Comput. Mater. Sci.
,
57
, pp.
111
117
.
6.
Cao
,
Y.
, and
Hutchinson
,
J. W.
,
2012
, “
Wrinkling Phenomena in Neo-Hookean Film/Substrate Bilayers
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031019
.
7.
Hong
,
W.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Formation of Creases on the Surfaces of Elastomers and Gels
,”
Appl. Phys. Lett.
,
95
(
11
), p.
111901
.
8.
Jin
,
L.
,
Auguste
,
A.
,
Hayward
,
R. C.
, and
Suo
,
Z.
,
2015
, “
Bifurcation Diagrams for the Formation of Wrinkles Or Creases in Soft Bilayers
,”
ASME J. Appl. Mech.
,
82
(
6
), p.
061008
.
9.
Nikravesh
,
S.
,
Ryu
,
D.
, and
Shen
,
Y.-L.
,
2019
, “
Direct Numerical Simulation of Buckling Instability of Thin Films on a Compliant Substrate
,”
Adv. Mech. Eng.
,
11
(
4
), p.
168781401984047
.
10.
Li
,
B.
,
Cao
,
Y.-P.
,
Feng
,
X.-Q.
, and
Gao
,
H.
,
2012
, “
Mechanics of Morphological Instabilities and Surface Wrinkling in Soft Materials: A Review
,”
Soft Matter
,
8
(
21
), p.
5728
.
11.
Jiang
,
H.
,
Khang
,
D.-Y.
,
Fei
,
H.
,
Kim
,
H.
,
Huang
,
Y.
,
Xiao
,
J.
, and
Rogers
,
J. A.
,
2008
, “
Finite Width Effect of Thin-Films Buckling on Compliant Substrate: Experimental and Theoretical Studies
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2585
2598
.
12.
Ning
,
Y.-J.
,
Zhang
,
Z.-C.
,
Gu
,
B.
, and
Jia
,
F.
,
2017
, “
Surface Instability and Wrinkling Pattern Evolution on a Fluid-Supported Inhomogeneous Film
,”
Eur. Phys. J. Plus
,
132
(
4
), p.
170
.
13.
Yin
,
J.
,
Gerling
,
G. J.
, and
Chen
,
X.
,
2010
, “
Mechanical Modeling of a Wrinkled Fingertip Immersed in Water
,”
Acta Biomater.
,
6
(
4
), pp.
1487
1496
.
14.
Ciarletta
,
P.
,
Destrade
,
M.
, and
Gower
,
A. L.
,
2013
, “
Shear Instability in Skin Tissue
,”
Q. J. Mech. Appl. Math.
,
66
(
2
), pp.
273
288
.
15.
Liu
,
Z.
,
Swaddiwudhipong
,
S.
, and
Hong
,
W.
,
2013
, “
Pattern Formation in Plants Via Instability Theory of Hydrogels
,”
Soft Matter
,
9
(
2
), pp.
577
587
.
16.
Eskandari
,
M.
,
Javili
,
A.
, and
Kuhl
,
E.
,
2016
, “
Elastosis During Airway Wall Remodeling Explains Multiple Co-Existing Instability Patterns
,”
J. Theor. Biol.
,
403
, pp.
209
218
.
17.
Richman
,
D. P.
,
Stewart
,
R. M.
,
Hutchinson
,
J. W.
, and
Caviness
,
V. S. J.
,
1975
, “
Mechanical Model of Brain Convolutional Development
,”
Science
,
189
(
4196
), pp.
18
21
.
18.
Van Essen
,
D. C.
,
1997
, “
A Tension-Based Theory of Morphogenesis and Compact Wiring in the Central Nervous System
,”
Nature
,
385
(
6614
), pp.
313
318
.
19.
Dobyns
,
W.
, and
Truwit
,
C.
,
1995
, “
Lissencephaly and Other Malformations of Cortical Development: 1995 Update
,”
Neuropediatrics
,
26
(
3
), pp.
132
147
.
20.
Oliveira Jr
,
P. P. d. M.
,
Valente
,
K. D.
,
Shergill
,
S. S.
,
Leite
,
C. d. C.
, and
Amaro Jr
,
E.
,
2010
, “
Cortical Thickness Reduction of Normal Appearing Cortex in Patients With Polymicrogyria
,”
J. Neuroimag.
,
20
(
1
), pp.
46
52
.
21.
Khundrakpam
,
B. S.
,
Lewis
,
J. D.
,
Kostopoulos
,
P.
,
Carbonell
,
F.
, and
Evans
,
A. C.
,
2017
, “
Cortical Thickness Abnormalities in Autism Spectrum Disorders Through Late Childhood, Adolescence, and Adulthood: A Large-Scale MRI Study
,”
Cerebral Cortex
,
27
(
3
), pp.
1721
1731
.
22.
Zhang
,
W.
,
Yu
,
T.
,
Liao
,
Y.
,
Liu
,
S.
,
Xu
,
M.
,
Yang
,
C.
,
Lui
,
S.
,
Ning
,
G.
, and
Qu
,
H.
,
2021
, “
Distinct Changes of Brain Cortical Thickness Relate to Post-Treatment Outcomes in Children With Epilepsy
,”
Seizure
,
91
, pp.
181
188
.
23.
Huang
,
R.
, and
Suo
,
Z.
,
2002
, “
Instability of a Compressed Elastic Film on a Viscous Layer
,”
Int. J. Solids Struct.
,
39
(
7
), pp.
1791
1802
.
24.
Javili
,
A.
,
Dortdivanlioglu
,
B.
,
Kuhl
,
E.
, and
Linder
,
C.
,
2015
, “
Computational Aspects of Growth-Induced Instabilities Through Eigenvalue Analysis
,”
Comput. Mech.
,
56
(
3
), pp.
405
420
.
25.
Tallinen
,
T.
,
Chung
,
J. Y.
,
Biggins
,
J. S.
, and
Mahadevan
,
L.
,
2014
, “
Gyrification From Constrained Cortical Expansion
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
35
), pp.
12667
12672
.
26.
Jiang
,
H.
,
Khang
,
D.-Y.
,
Song
,
J.
,
Sun
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2007
, “
Finite Deformation Mechanics in Buckled Thin Films on Compliant Supports
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
40
), pp.
15607
15612
.
27.
Nikravesh
,
S.
,
Ryu
,
D.
, and
Shen
,
Y.-L.
,
2020
, “
Instability Driven Surface Patterns: Insights From Direct Three-Dimensional Finite Element Simulations
,”
Extr. Mech. Lett.
,
39
, p.
100779
.
28.
Bakiler
,
A. D.
, and
Javili
,
A.
,
2020
, “
Bifurcation Behavior of Compressible Elastic Half-Space Under Plane Deformations
,”
Int. J. Non-Linear Mech.
,
126
, p.
103553
.
29.
Holland
,
M. A.
,
Li
,
B.
,
Feng
,
X. Q.
, and
Kuhl
,
E.
,
2017
, “
Instabilities of Soft Films on Compliant Substrates
,”
J. Mech. Phys. Solids
,
98
, pp.
350
365
.
30.
Colin
,
J.
,
Darayi
,
M.
, and
Holland
,
M. A.
,
2019
, “
Stiffness Contrast and Separation Influence Wrinkling of Adjacent Layers in a Homogeneous Matrix
,”
ASME J. Appl. Mech.
,
86
(
4
), p.
041004
.
31.
Andres
,
S.
,
Steinmann
,
P.
, and
Budday
,
S.
,
2018
, “
The Origin of Compression Influences Geometric Instabilities in Bilayers
,”
Proc. R. Soc. A.
,
474
(
2217
), p.
20180267
.
32.
Bayly
,
P. V.
,
Okamoto
,
R. J.
,
Xu
,
G.
,
Shi
,
Y.
, and
Taber
,
L. A.
,
2013
, “
A Cortical Folding Model Incorporating Stress-Dependent Growth Explains Gyral Wavelengths and Stress Patterns in the Developing Brain
,”
Phys. Biol.
,
10
(
1
), p.
016005
.
33.
Razavi
,
M. J.
,
Zhang
,
T.
,
Li
,
X.
,
Liu
,
T.
, and
Wang
,
X.
,
2015
, “
Role of Mechanical Factors in Cortical Folding Development
,”
Phys. Rev. E
,
92
(
3
), p.
032701
.
34.
Razavi
,
M. J.
,
Zhang
,
T.
,
Liu
,
T.
, and
Wang
,
X.
,
2015
, “
Cortical Folding Pattern and Its Consistency Induced by Biological Growth
,”
Sci. Rep.
,
5
(
1
), p.
14477
.
35.
Budday
,
S.
,
Raybaud
,
C.
, and
Kuhl
,
E.
,
2015
, “
A Mechanical Model Predicts Morphological Abnormalities in the Developing Human Brain
,”
Sci. Rep.
,
4
(
1
), p.
5644
.
36.
Holland
,
M. A.
,
Budday
,
S.
,
Goriely
,
A.
, and
Kuhl
,
E.
,
2018
, “
Symmetry Breaking in Wrinkling Patterns: Gyri Are Universally Thicker Than Sulci
,”
Phys. Rev. Lett.
,
121
(
22
), p.
228002
.
37.
Wang
,
L.
,
Yao
,
J.
, and
Hu
,
N.
,
2019
, “
A Mechanical Method of Cerebral Cortical Folding Development Based on Thermal Expansion
,”
Sci. Rep.
,
9
(
1
), p.
1914
.
38.
Lee
,
S. C. M.
, and
Lueck
,
C. J.
,
2014
, “
Cerebrospinal Fluid Pressure in Adults
,”
J. Neuro-Ophthalmol.
,
34
(
3
), pp.
278
283
.
39.
Ru
,
D.
,
Yan
,
Y.
,
Li
,
B.
,
Shen
,
X.
,
Tang
,
R.
, and
Wang
,
E.
,
2021
, “
BNP and NT-proBNP Concentrations in Paired Cerebrospinal Fluid and Plasma Samples of Patients With Traumatic Brain Injury
,”
J. Surg. Res.
,
266
, pp.
353
360
.
40.
Hakim
,
S.
, and
Adams
,
R. D.
,
1965
, “
The Special Clinical Problem of Symptomatic Hydrocephalus With Normal Cerebrospinal Fluid Pressure Observations on Cerebrospinal Fluid Hydrodynamics
,”
J. Neurol. Sci.
,
2
(
4
), pp.
307
327
.
41.
Castle-Kirszbaum
,
M.
, and
Goldschlager
,
T.
,
2021
, “
Transmantle and Transvenous Pressure Gradients in Cerebrospinal Fluid Disorders
,”
Neurosurg. Rev.
,
45
(
1
), pp.
305
315
.
42.
Miyan
,
J. A.
,
Zendah
,
M.
,
Mashayekhi
,
F.
, and
Owen-Lynch
,
P. J.
,
2006
, “
Cerebrospinal Fluid Supports Viability and Proliferation of Cortical Cells In Vitro, Mirroring In Vivo Development
,”
Cerebrospinal Fluid Res.
,
3
(
1
), p.
2
.
43.
Kang
,
K.
,
Kwak
,
K.
,
Yoon
,
U.
, and
Lee
,
J.-M.
,
2018
, “
Lateral Ventricle Enlargement and Cortical Thinning in Idiopathic Normal-Pressure Hydrocephalus Patients
,”
Sci. Rep.
,
8
(
1
), p.
13306
.
44.
Oliveira
,
L. M.
,
Nitrini
,
R.
, and
Román
,
G. C.
,
2019
, “
Normal-Pressure Hydrocephalus: A Critical Review
,”
Dementia Neuropsychol.
,
13
(
2
), pp.
133
143
.
45.
Roy
,
A.
,
Murphy
,
R. M.
,
Deng
,
M.
,
MacDonald
,
J. W.
,
Bammler
,
T. K.
,
Aldinger
,
K. A.
,
Glass
,
I. A.
, and
Millen
,
K. J.
,
2019
, “
PI3K-Yap Activity Drives Cortical Gyrification and Hydrocephalus in Mice
,”
eLife
,
8
, p.
e45961
.
46.
Striedter
,
G. F.
,
Srinivasan
,
S.
, and
Monuki
,
E. S.
,
2015
, “
Cortical Folding: When, Where, How, and Why
?”
Annu. Rev. Neurosci.
,
38
(
1
), pp.
291
307
.
47.
Darayi
,
M.
,
Hoffman
,
M. E.
,
Sayut
,
J.
,
Wang
,
S.
,
Demirci
,
N.
,
Consolini
,
J.
, and
Holland
,
M. A.
,
2021
, “
Computational Models of Cortical Folding: A Review of Common Approaches
,”
J. Biomech.
,
139
, p.
110851
.
48.
Clark
,
W.
,
1945
,
Deformation Patterns in the Cerebral Cortex
,
Oxford University Press
,
Oxford
.
49.
Barron
,
D. H.
,
1950
, “
An Experimental Analysis of Some Factors Involved in the Development of the Fissure Pattern of the Cerebral Cortex
,”
J. Exp. Zool.
,
113
(
3
), pp.
553
581
.
50.
Nie
,
J.
,
Guo
,
L.
,
Li
,
G.
,
Faraco
,
C.
,
Stephen Miller
,
L.
, and
Liu
,
T.
,
2010
, “
A Computational Model of Cerebral Cortex Folding
,”
J. Theor. Biol.
,
264
(
2
), pp.
467
478
.
51.
Wang
,
L.
,
Yao
,
J.
,
Ning
,
H.
,
Wu
,
L.
,
Sun
,
D.
, and
Hu
,
N.
,
2019
, “
A Three-Layer Mechanical Model for the Analysis of Effects of Pia Matter on Cortical Folding
,”
Eng. Comput.
,
36
(
8
), pp.
2634
2650
.
52.
Goos
,
G.
,
Hartmanis
,
J.
,
van Leeuwen
,
J.
,
Hutchison
,
D.
,
Kanade
,
T.
,
Kittler
,
J.
,
Kleinberg
,
J. M.
, et al
,
2010
, “
Lecture Notes in Computer Science
.” p.
727
.
53.
Consolini
,
J.
,
Demirci
,
N.
,
Fulwider
,
A.
,
Hutsler
,
J. J.
, and
Holland
,
M. A.
,
2022
, “
Bok’s Equi-Volume Principle: Translation, Historical Context, and a Modern Perspective
,”
Brain Multiphys.
,
3
, p.
100057
.
54.
Holland
,
M. A.
,
Budday
,
S.
,
Li
,
G.
,
Shen
,
D.
,
Goriely
,
A.
, and
Kuhl
,
E.
,
2020
, “
Folding Drives Cortical Thickness Variations
,”
Eur. Phys. J. Special Top.
,
229
(
17–18
), pp.
2757
2778
.
55.
Wang
,
S.
,
Demirci
,
N.
, and
Holland
,
M. A.
,
2021
, “
Numerical Investigation of Biomechanically Coupled Growth in Cortical Folding
,”
Biomech. Model. Mechanobiol.
,
20
(
2
), pp.
555
567
.
56.
Darayi
,
M.
, and
Holland
,
M. A.
,
2020
, “
Surface Pressure Reduces Stability in Bilayered Systems Under Compression
,”
Int. J. Non-Linear Mech.
,
127
, p.
103589
.
57.
Mehta
,
S.
,
Raju
,
G.
,
Kumar
,
S.
, and
Saxena
,
P.
,
2021
, “
Instabilities in a Compressible Hyperelastic Cylindrical Channel Due to Internal Pressure and External Constraints
,”
Int. J. Non Linear Mech.
,
144
, p.
104031
.
58.
Anani
,
Y.
, and
Rahimi
,
G.
,
2018
, “
On the Stability of Internally Pressurized Thick-Walled Spherical and Cylindrical Shells Made of Functionally Graded Incompressible Hyperelastic Material
,”
Lat. Am. J. Solids Struct.
,
15
(
4
), p.
37
.
59.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.
60.
Abaqus/Explicit
,
2023
,
Abaqus Reference Manuals
,
Dassault Systemes Simulia
,
Providence, RI
.
61.
Nikravesh
,
S.
,
Ryu
,
D.
, and
Shen
,
Y.-L.
,
2020
, “
Instabilities of Thin Films on a Compliant Substrate: Direct Numerical Simulations From Surface Wrinkling to Global Buckling
,”
Sci. Rep.
,
10
(
1
), p.
5728
.
62.
Budday
,
S.
,
Kuhl
,
E.
, and
Hutchinson
,
J. W.
,
2015
, “
Period-Doubling and Period-Tripling in Growing Bilayered Systems
,”
Philos. Mag.
,
95
(
28–30
), pp.
3208
3224
.
63.
Tan
,
Y.
,
Hu
,
B.
,
Song
,
J.
,
Chu
,
Z.
, and
Wu
,
W.
,
2020
, “
Bioinspired Multiscale Wrinkling Patterns on Curved Substrates: An Overview
,”
Nano-Micro Lett.
,
12
(
1
), p.
101
.
64.
Li
,
M.
, and
Sun
,
B.
,
2022
, “
Post-Buckling Behaviors of Thin-Film Soft-Substrate Bilayers With Finite-Thickness Substrate
,”
Sci. Rep.
,
12
(
1
), p.
4074
.
You do not currently have access to this content.