Abstract

The hard-magnetic soft materials (HMSMs) belong to the magnetoactive category of smart polymers that undergo large actuation strain under an externally applied magnetic field and can sustain a high residual magnetic flux density. Because of these remarkable characteristics, HMSMs are promising candidates for the remotely controlled actuators. The magnetic actuation behavior of the hard-magnetic soft actuators (HMSAs) is considerably affected by the viscoelastic material behavior of HMSMs. In this article, we aim at developing an analytical dynamic model of a typical planar model of HMSAs concerning the viscoelasticity of HMSMs. A Zener rheological model in conjunction with an incompressible neo-Hookean model of hyperelasticity and Rayleigh dissipation function is employed for defining the constitutive behavior of the viscoelastic HMSA. The governing equations of dynamic motion are deduced by implementing the nonconservative form of the Euler–Lagrange equation. The established dynamic model is utilized for providing preliminary insights pertaining to the effect of the viscoelasticity on the nonlinear oscillations of the actuator. The phase–plane portraits, Poincaré maps, and the time–history response are plotted to investigate the stability, resonant behavior, and periodicity of the actuator. The results and inferences reported here should provide the initial step toward the design and the development of modern actuators for diverse futuristic applications in the medical and engineering fields.

References

1.
Wang
,
D.
, and
Liao
,
W. H.
,
2011
, “
Magnetorheological Fluid Dampers: A Review of Parametric Modelling
,”
Smart Mater. Struct.
,
20
(
2
), p.
023001
.
2.
Li
,
Y.
,
Li
,
J.
,
Li
,
W.
, and
Du
,
H.
,
2014
, “
A State-of-the-Art Review on Magnetorheological Elastomer Devices
,”
Smart Mater. Struct.
,
23
(
12
), p.
123001
.
3.
Lucarini
,
S.
,
Hossain
,
M.
, and
Garcia-Gonzalez
,
D.
,
2022
, “
Recent Advances in Hard-Magnetic Soft Composites: Synthesis, Characterisation, Computational Modelling, and Applications
,”
Compos. Struct.
,
279
, p.
114800
.
4.
Schümann
,
M.
,
Borin
,
D. Y.
,
Huang
,
S.
,
Auernhammer
,
G. K.
,
Müller
,
R.
, and
Odenbach
,
S.
,
2017
, “
A Characterisation of the Magnetically Induced Movement of NDFEB-Particles in Magnetorheological Elastomers
,”
Smart Mater. Struct.
,
26
(
9
), p.
095018
.
5.
Bertotti
,
G.
,
1998
,
Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers
,
Gulf Professional Publishing
.
6.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
.
7.
Zhao
,
R.
,
Kim
,
Y.
,
Chester
,
S. A.
,
Sharma
,
P.
, and
Zhao
,
X.
,
2019
, “
Mechanics of Hard-Magnetic Soft Materials
,”
J. Mech. Phys. Solids
,
124
, pp.
244
263
.
8.
Wang
,
L.
,
Kim
,
Y.
,
Guo
,
C. F.
, and
Zhao
,
X.
,
2020
, “
Hard-Magnetic Elastica
,”
J. Mech. Phys. Solids
,
142
, p.
104045
.
9.
Wu
,
S.
,
Ze
,
Q.
,
Zhang
,
R.
,
Hu
,
N.
,
Cheng
,
Y.
,
Yang
,
F.
, and
Zhao
,
R.
,
2019
, “
Symmetry-Breaking Actuation Mechanism for Soft Robotics and Active Metamaterials
,”
ACS Appl. Mater. Interfaces
,
11
(
44
), pp.
41649
41658
.
10.
Wu
,
S.
,
Hamel
,
C. M.
,
Ze
,
Q.
,
Yang
,
F.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2020
, “
Evolutionary Algorithm-Guided Voxel-Encoding Printing of Functional Hard-Magnetic Soft Active Materials
,”
Adv. Intel. Syst.
,
2
(
8
), p.
2000060
.
11.
Moreno-Mateos
,
M.
,
Lopez-Donaire
,
M.
,
Hossain
,
M.
, and
Garcia-Gonzalez
,
D.
,
2022
, “
Effects of Soft and Hard Magnetic Particles on the Mechanical Performance of Ultra-Soft Magnetorheological Elastomers
,”
Smart Mater. Struct.
,
31
(
6
), p.
065018
.
12.
Wu
,
Y.
,
Zhang
,
S.
,
Yang
,
Y.
,
Li
,
Z.
,
Wei
,
Y.
, and
Ji
,
Y.
,
2022
, “
Locally Controllable Magnetic Soft Actuators With Reprogrammable Contraction-Derived Motions
,”
Sci. Adv.
,
8
(
25
), p.
eabo6021
.
13.
Khurana
,
A.
,
Kumar
,
D.
,
Sharma
,
A. K.
,
Zurlo
,
G.
, and
Joglekar
,
M. M.
,
2022
, “
Taut Domains in Transversely Isotropic Electro-Magneto-Active Thin Membranes
,”
Int. J. Non-Linear Mech.
,
147
, p.
104228
.
14.
Khurana
,
A.
,
Kumar
,
D.
,
Sharma
,
A. K.
, and
Joglekar
,
M. M.
,
2022
, “
Static and Dynamic Instability Modeling of Electro-Magneto-Active Polymers With Various Entanglements and Crosslinks
,”
Int. J. Non-Linear Mech.
,
139
, p.
103865
.
15.
Kim
,
Y.
,
Parada
,
G. A.
,
Liu
,
S.
, and
Zhao
,
X.
,
2019
, “
Ferromagnetic Soft Continuum Robots
,”
Sci. Rob.
,
4
(
33
), p.
eaax7329
.
16.
Wang
,
L.
,
Zheng
,
D.
,
Harker
,
P.
,
Patel
,
A. B.
,
Guo
,
C. F.
, and
Zhao
,
X.
,
2021
, “
Evolutionary Design of Magnetic Soft Continuum Robots
,”
Proc. Natl. Acad. Sci. USA
,
118
(
21
), p.
e2021922118
.
17.
Bayat
,
A.
, and
Gordaninejad
,
F.
,
2015
, “
Band-Gap of a Soft Magnetorheological Phononic Crystal
,”
J. Vib. Acoust.
,
137
(
1
), p.
011011
.
18.
Bayat
,
A.
, and
Gordaninejad
,
F.
,
2015
, “
Dynamic Response of a Tunable Phononic Crystal Under Applied Mechanical and Magnetic Loadings
,”
Smart Mater. Struct.
,
24
(
6
), p.
065027
.
19.
Harne
,
R. L.
,
Deng
,
Z.
, and
Dapino
,
M. J.
,
2018
, “
Adaptive Magnetoelastic Metamaterials: A New Class of Magnetorheological Elastomers
,”
J. Intel. Mater. Syst. Struct.
,
29
(
2
), pp.
265
278
.
20.
Karami Mohammadi
,
N.
,
Galich
,
P. I.
,
Krushynska
,
A. O.
, and
Rudykh
,
S.
,
2019
, “
Soft Magnetoactive Laminates: Large Deformations, Transverse Elastic Waves and Band Gaps Tunability by a Magnetic Field
,”
J. Appl. Mech.
,
86
(
11
), p.
111001
.
21.
Zhang
,
Q.
, and
Rudykh
,
S.
,
2022
, “
Magneto-Deformation and Transverse Elastic Waves in Hard-Magnetic Soft Laminates
,”
Mech. Mater.
,
169
, p.
104325
.
22.
Li
,
B.
,
Yan
,
W.
, and
Gao
,
Y.
,
2022
, “
Tunability of Band Gaps of Programmable Hard-Magnetic Soft Material Phononic Crystals
,”
Acta Mech. Solida Sin.
,
35
(
5
), pp.
719
732
.
23.
Zhang
,
Q.
,
Cherkasov
,
A. V.
,
Arora
,
N.
,
Hu
,
G.
, and
Rudykh
,
S.
,
2023
, “
Magnetic Field-Induced Asymmetric Mechanical Metamaterials
,”
Extreme Mech. Lett.
,
59
, p.
101957
.
24.
Torbati
,
M.
,
Mozaffari
,
K.
,
Liu
,
L.
, and
Sharma
,
P.
,
2022
, “
Coupling of Mechanical Deformation and Electromagnetic Fields in Biological Cells
,”
Rev. Mod. Phys.
,
94
(
2
), p.
025003
.
25.
Chen
,
W.
, and
Wang
,
L.
,
2020
, “
Theoretical Modeling and Exact Solution for Extreme Bending Deformation of Hard-Magnetic Soft Beams
,”
ASME J. Appl. Mech.
,
87
(
4
), p.
041002
.
26.
Rajan
,
A.
, and
Arockiarajan
,
A.
,
2021
, “
Bending of Hard-Magnetic Soft Beams: A Finite Elasticity Approach With Anticlastic Bending
,”
Eur. J. Mech.-A/Solids
,
90
, p.
104374
.
27.
Chen
,
W.
,
Wang
,
L.
,
Yan
,
Z.
, and
Luo
,
B.
,
2021
, “
Three-Dimensional Large-Deformation Model of Hard-Magnetic Soft Beams
,”
Compos. Struct.
,
266
, p.
113822
.
28.
Dehrouyeh-Semnani
,
A. M.
,
2021
, “
On Bifurcation Behavior of Hard Magnetic Soft Cantilevers
,”
Int. J. Non-Linear Mech.
,
134
, p.
103746
.
29.
Zhang
,
R.
,
Wu
,
S.
,
Ze
,
Q.
, and
Zhao
,
R.
,
2020
, “
Micromechanics Study on Actuation Efficiency of Hard-Magnetic Soft Active Materials
,”
ASME J. Appl. Mech.
,
87
(
9
), p.
091008
.
30.
Rahmati
,
A. H.
,
Jia
,
R.
,
Tan
,
K.
,
Zhao
,
X.
,
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2023
, “
Theory of Hard Magnetic Soft Materials to Create Magnetoelectricity
,”
J. Mech. Phys. Solids
,
171
, p.
105136
.
31.
Rahmati
,
A. H.
,
Jia
,
R.
,
Tan
,
K.
,
Liu
,
L.
,
Zhao
,
X.
,
Deng
,
Q.
, and
Sharma
,
P.
,
2023
, “
Giant Magnetoelectricity in Soft Materials Using Hard Magnetic Soft Materials
,”
Mater. Today Phys.
,
31
, p.
100969
.
32.
Yan
,
D.
,
Aymon
,
B. F.
, and
Reis
,
P. M.
,
2023
, “
A Reduced-Order, Rotation-Based Model for Thin Hard-Magnetic Plates
,”
J. Mech. Phys. Solids
,
170
, p.
105095
.
33.
Chen
,
L.
,
Tan
,
K.
,
Yang
,
S.
, and
Deng
,
Q.
,
2022
, “
Evoking the Snap-Through Instability in Hard-Magnetic Soft Materials: Rapid Actuation and Giant Deformation
,”
Int. J. Solids Struct.
,
246
, p.
111607
.
34.
Mukherjee
,
D.
,
Rambausek
,
M.
, and
Danas
,
K.
,
2021
, “
An Explicit Dissipative Model for Isotropic Hard Magnetorheological Elastomers
,”
J. Mech. Phys. Solids
,
151
, p.
104361
.
35.
Garcia-Gonzalez
,
D.
,
2019
, “
Magneto-Visco-Hyperelasticity for Hard-Magnetic Soft Materials: Theory and Numerical Applications
,”
Smart Mater. Struct.
,
28
(
8
), p.
085020
.
36.
Dadgar-Rad
,
F.
, and
Hossain
,
M.
,
2022
, “
Large Viscoelastic Deformation of Hard-Magnetic Soft Beams
,”
Extreme Mech. Lett.
,
54
, p.
101773
.
37.
Xing
,
Z.
, and
Yong
,
H.
,
2021
, “
Dynamic Analysis and Active Control of Hard-Magnetic Soft Materials
,”
Int. J. Smart Nano Mater.
,
12
(
4
), pp.
429
449
.
38.
Tan
,
K.
,
Chen
,
L.
,
Yang
,
S.
, and
Deng
,
Q.
,
2022
, “
Dynamic Snap-Through Instability and Damped Oscillation of a Flat Arch of Hard Magneto-Active Elastomers
,”
Int. J. Mech. Sci.
,
230
, p.
107523
.
39.
Nagal
,
N.
,
Srivastava
,
S.
,
Pandey
,
C.
,
Gupta
,
A.
, and
Sharma
,
A. K.
,
2022
, “
Alleviation of Residual Vibrations in Hard-Magnetic Soft Actuators Using a Command-Shaping Scheme
,”
Polymers
,
14
(
15
), p.
3037
.
40.
Garcia-Gonzalez
,
D.
, and
Hossain
,
M.
,
2021
, “
A Microstructural-Based Approach to Model Magneto-Viscoelastic Materials at Finite Strains
,”
Int. J. Solids Struct.
,
208
, pp.
119
132
.
41.
Lee
,
E. H.
,
1969
, “
Elastic-Plastic Deformation at Finite Strains
,”
ASME J. Appl. Mech.
,
36
(
1
), pp.
1
6
.
42.
Sharma
,
A. K.
, and
Joglekar
,
M. M.
,
2019
, “
A Computationally Efficient Locking Free Numerical Framework for Modeling Visco-Hyperelastic Dielectric Elastomers
,”
Comput. Methods Appl. Mech. Eng.
,
352
, pp.
625
653
.
43.
Sharma
,
A. K.
,
Bajpayee
,
S.
,
Joglekar
,
D. M.
, and
Joglekar
,
M. M.
,
2017
, “
Dynamic Instability of Dielectric Elastomer Actuators Subjected to Unequal Biaxial Prestress
,”
Smart Mater. Struct.
,
26
(
11
), p.
115019
.
44.
Khurana
,
A.
,
Kumar
,
A.
,
Sharma
,
A. K.
, and
Joglekar
,
M. M.
,
2021
, “
Effect of Polymer Chains Entanglements, Crosslinks and Finite Extensibility on the Nonlinear Dynamic Oscillations of Dielectric Viscoelastomer Actuators
,”
Nonlinear Dyn.
,
104
(
2
), pp.
1227
1251
.
45.
Broer
,
H. W.
,
Huitema
,
G. B.
, and
Sevryuk
,
M. B.
,
2009
,
Quasi-Periodic Motions in Families of Dynamical Systems: Order Amidst Chaos
,
Springer
.
46.
Alibakhshi
,
A.
,
Dastjerdi
,
S.
,
Akgöz
,
B.
, and
Civalek
,
Ö.
,
2022
, “
Parametric Vibration of a Dielectric Elastomer Microbeam Resonator Based on a Hyperelastic Cosserat Continuum Model
,”
Compos. Struct.
,
287
, p.
115386
.
47.
Kumar
,
A.
,
Khurana
,
A.
,
Sharma
,
A. K.
, and
Joglekar
,
M.
,
2022
, “
An Equivalent Spring-Based Model to Couple the Motion of Visco-Hyperelastic Dielectric Elastomer With the Confined Compressible Fluid/Air Mass
,”
Int. J. Non-Linear Mech.
,
147
, p.
104232
.
48.
Khurana
,
A.
,
Kumar
,
A.
,
Raut
,
S. K.
,
Sharma
,
A. K.
, and
Joglekar
,
M. M.
,
2021
, “
Effect of Viscoelasticity on the Nonlinear Dynamic Behavior of Dielectric Elastomer Minimum Energy Structures
,”
Int. J. Solids Struct.
,
208
, pp.
141
153
.
49.
Xu
,
B.-X.
,
Mueller
,
R.
,
Theis
,
A.
,
Klassen
,
M.
, and
Gross
,
D.
,
2012
, “
Dynamic Analysis of Dielectric Elastomer Actuators
,”
Appl. Phys. Lett.
,
100
(
11
), p.
112903
.
50.
Khurana
,
A.
,
Kumar
,
D.
,
Sharma
,
A. K.
, and
Joglekar
,
M. M.
,
2021
, “
Nonlinear Oscillations of Particle-Reinforced Electro-Magneto-Viscoelastomer Actuators
,”
ASME J. Appl. Mech.
,
88
(
12
), p.
121002
.
You do not currently have access to this content.