Abstract

In this work, the variational asymptotic method (VAM) based homogenization framework is used for the first time to determine the equivalent elastic stiffness tensor of auxetic materials. The proposed method allows the structural elements of the auxetic unit cell to naturally incorporate rotational degrees-of-freedom, without any ad-hoc assumptions. The overall macroscale homogenized response of the unit cells is considered to be fully anisotropic; specific possible responses, representative of orthotropy or transverse isotropy naturally emerge from the VAM-based homogenization, due to the arrangements of the structural elements making up the unit cell. For all the auxetic unit cell geometries considered in this study, the predictions obtained from the in-house python-based implementation of the VAM-based homogenization framework are validated using commercial finite element software (abaqus) and open literature. The results demonstrate the versatility and the computational efficiency of the VAM-based homogenization framework to describe auxetic metamaterials.

References

1.
Kolken
,
H. M. A.
, and
Zadpoor
,
A. A.
,
2017
, “
Auxetic Mechanical Metamaterials
,”
RSC Adv.
,
7
(
9
), pp.
5111
5129
.
2.
Joseph
,
A.
,
Mahesh
,
V.
, and
Harursampath
,
D.
,
2021
, “
On the Application of Additive Manufacturing Methods for Auxetic Structures: A Review
,”
Adv. Manuf.
,
9
(
3
), pp.
342
368
.
3.
Jin
,
Y.
,
Xie
,
C.
,
Gao
,
Q.
,
Zhou
,
X.
,
Li
,
G.
,
Du
,
J.
, and
He
,
Y.
,
2021
, “
Fabrication of Multi-scale and Tunable Auxetic Scaffolds for Tissue Engineering
,”
Mater. Des.
,
197
, p.
109277
.
4.
Mousanezhad
,
D.
,
Haghpanah
,
B.
,
Ghosh
,
R.
,
Hamouda
,
A. M.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
,
2016
, “
Elastic Properties of Chiral, Anti-Chiral, and Hierarchical Honeycombs: A Simple Energy-Based Approach
,”
Theor. App. Mech. Lett.
,
6
(
2
), pp.
81
96
.
5.
Gaspar
,
N.
,
Ren
,
X.
,
Smith
,
C. W.
,
Grima
,
J.
, and
Evans
,
K. E.
,
2005
, “
Novel Honeycombs With Auxetic Behavior
,”
Acta Mater.
,
53
(
8
), pp.
2439
2445
.
6.
Liu
,
W.
,
Li
,
H.
,
Yang
,
Z.
,
Zhang
,
J.
, and
Ge
,
X.
,
2020
, “
In-Plane Elastic Properties of a 2D Chiral Cellular Structure With V-Shaped Wings
,”
Eng. Struct.
,
210
, p.
110384
.
7.
Li
,
C.
,
Shen
,
H.-S.
, and
Wang
,
H.
,
2021
, “
Full-Scale Finite Element Modeling and Nonlinear Bending Analysis of Sandwich Plates With Functionally Graded Auxetic 3-D Lattice Core
,”
J. Sandw. Struct. Mater.
,
23
(
7
), pp.
13
3138
.
8.
Grima
,
J.
,
Chetcuti
,
E.
,
Manicaro
,
E.
,
Attard
,
D.
,
Camilleri
,
M.
,
Gatt
,
R.
, and
Evans
,
K.
,
2012
, “
On the Auxetic Properties of Generic Rotating Rigid Triangles
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
468
(
2139
), pp.
810
830
.
9.
Zhang
,
X. G.
,
Ren
,
X.
,
Jiang
,
W.
,
Zhang
,
X. Y.
,
Luo
,
C.
,
Zhang
,
Y.
, and
Xie
,
Y. M.
,
2022
, “
A Novel Auxetic Chiral Lattice Composite: Experimental and Numerical Study
,”
Compos. Struct.
,
282
, p.
115043
.
10.
Galea
,
R.
,
Farrugia
,
P.-S.
,
Dudek
,
K. K.
,
Attard
,
D.
,
Grima
,
J. N.
, and
Gatt
,
R.
,
2023
, “
A Novel Design Method to Produce 3-D Auxetic Metamaterials With Continuous Pores Exemplified Through 3-D Rotating Auxetic Systems
,”
Mater. Des.
,
226
, p.
111596
.
11.
Baughman
,
R. H.
,
Shacklette
,
J. M.
,
Zakhidov
,
A. A.
, and
Stafstrom
,
S.
,
1998
, “
Negative Poisson’s Ratios as a Common Feature of Cubic Metals
,”
Nature
,
392
(
6674
), pp.
362
365
.
12.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
13.
Alderson
,
K.
,
Fitzgerald
,
A.
, and
Evans
,
K.
,
2000
, “
The Strain Dependent Indentation Resilience of Auxetic Microporous Polyethylene
,”
J. Mater. Sci.
,
35
(
16
), pp.
4039
4047
.
14.
Kumar
,
N.
,
Khaderi
,
S. N.
, and
Tirumala Rao
,
K.
,
2019
, “
Elasto-Plastic Indentation of Auxetic and Metal Foams
,”
ASME J. Appl. Mech.
,
87
(
1
), p.
011006
.
15.
Choudhry
,
N. K.
,
Panda
,
B.
, and
Kumar
,
S.
,
2023
, “
Enhanced Energy Absorption Performance of 3-D Printed 2D Auxetic Lattices
,”
Thin-Walled Struct.
,
186
, p.
110650
.
16.
Ren
,
X.
,
Zhang
,
Y.
,
Han
,
C. Z.
,
Han
,
D.
,
Zhang
,
X. Y.
,
Zhang
,
X. G.
, and
Xie
,
Y. M.
,
2022
, “
Mechanical Properties of Foam-Filled Auxetic Circular Tubes: Experimental and Numerical Study
,”
Thin-Walled Struct.
,
170
, p.
108584
.
17.
Zhang
,
Q.
,
Lu
,
W.
,
Scarpa
,
F.
,
Barton
,
D.
,
Lakes
,
R. S.
,
Zhu
,
Y.
,
Lang
,
Z.
, and
Peng
,
H.-X.
,
2020
, “
Large Stiffness Thermoformed Open Cell Foams With Auxeticity
,”
Appl. Mater. Today
,
20
, p.
100775
.
18.
Koudelka
,
P.
,
Jirousek
,
O.
,
Fıla
,
T.
, and
Doktor
,
T.
,
2016
, “
Compressive Properties of Auxetic Structures Produced With Direct 3-D Printing
,”
Mater. Tehnol.
,
50
(
3
), pp.
311
317
.
19.
Qi
,
C.
,
Jiang
,
F.
,
Yu
,
C.
, and
Yang
,
S.
,
2019
, “
In-Plane Crushing Response of Tetra-Chiral Honeycombs
,”
Int. J. Impact Eng.
,
130
, pp.
247
265
.
20.
Fozdar
,
D. Y.
,
Soman
,
P.
,
Lee
,
J. W.
,
Han
,
L.-H.
, and
Chen
,
S.
,
2011
, “
Three-Dimensional Polymer Constructs Exhibiting a Tunable Negative Poisson’s Ratio
,”
Adv. Funct. Mater.
,
21
(
14
), pp.
2712
2720
.
21.
Qiao
,
J.
, and
Chen
,
C. Q.
,
2015
, “
Analyses on the In-Plane Impact Resistance of Auxetic Double Arrowhead Honey-Combs
,”
ASME J. Appl. Mech.
,
82
(
5
), p.
051007
.
22.
Li
,
K.
,
Zhang
,
Y.
,
Hou
,
Y.
,
Su
,
L.
,
Zeng
,
G.
, and
Xu
,
X.
,
2023
, “
Mechanical Properties of Re-Entrant Anti-Chiral Auxetic Metamaterial Under the In-Plane Compression
,”
Thin-Walled Struct.
,
184
, p.
110465
.
23.
Tabacu
,
S.
,
Negrea
,
R. F.
, and
Negrea
,
D.
,
2020
, “
Experimental, Numerical and Analytical Investigation of 2D Tetra-Anti-Chiral Structure Under Compressive Loads
,”
Thin-Walled Struct.
,
155
, p.
106929
.
24.
Wei
,
L.
,
Zhao
,
X.
,
Yu
,
Q.
, and
Zhu
,
G.
,
2020
, “
A Novel Star Auxetic Honeycomb With Enhanced In-Plane Crushing Strength
,”
Thin-Walled Struct.
,
149
, p.
106623
.
25.
Jiang
,
Y.
,
Rudra
,
B.
,
Shim
,
J.
, and
Li
,
Y.
,
2019
, “
Limiting Strain for Auxeticity Under Large Compressive Deformation: Chiral Vs. Re-Entrant Cellular Solids
,”
Int. J. Solids Struct.
,
162
, pp.
87
95
.
26.
Dutta
,
S.
,
Menon
,
H. G.
,
Hariprasad
,
M.
,
Krishnan
,
A.
, and
Shankar
,
B.
,
2021
, “
Study of Auxetic Beams Under Bending: A Finite Element Approach
,”
Mater. Today: Proc.
,
46
, pp.
9782
9787
.
27.
Jiang
,
W.
,
Ren
,
X.
,
Wang
,
S. L.
,
Zhang
,
X. G.
,
Zhang
,
X. Y.
,
Luo
,
C.
,
Xie
,
Y. M.
,
Scarpa
,
F.
,
Alderson
,
A.
, and
Evans
,
K. E.
,
2022
, “
Manufacturing, Characteristics and Applications of Auxetic Foams: A State-of-the-Art Review
,”
Compos. B: Eng.
,
235
, p.
109733
.
28.
Scarpa
,
F.
,
Panayiotou
,
P.
, and
Tomlinson
,
G.
,
2000
, “
Numerical and Experimental Uniaxial Loading on In-Plane Auxetic Honeycombs
,”
J. Strain Anal. Eng. Des.
,
35
(
5
), pp.
383
388
.
29.
Lira
,
C.
,
Innocenti
,
P.
, and
Scarpa
,
F.
,
2009
, “
Transverse Elastic Shear of Auxetic Multi Re-Entrant Honeycombs
,”
Compos. Struct.
,
90
(
3
), pp.
314
322
.
30.
Smith
,
C. W.
,
Grima
,
J.
, and
Evans
,
K.
,
2000
, “
A Novel Mechanism for Generating Auxetic Behavior in Reticulated Foams: Missing Rib Foam Model
,”
Acta Mater.
,
48
(
17
), pp.
4349
4356
.
31.
Gatt
,
R.
,
Attard
,
D.
,
Farrugia
,
P.-S.
,
Azzopardi
,
K. M.
,
Mizzi
,
L.
,
Brincat
,
J.-P.
, and
Grima
,
J. N.
,
2013
, “
A Realistic Generic Model for Anti-Tetrachiral Systems
,”
Phys. Status Solidi B
,
250
(
10
), pp.
2012
2019
.
32.
Masters
,
I.
, and
Evans
,
K.
,
1996
, “
Models for the Elastic Deformation of Honeycombs
,”
Compos. Struct.
,
35
(
4
), pp.
403
422
.
33.
Wang
,
T.
,
Wang
,
L.
,
Ma
,
Z.
, and
Hulbert
,
G. M.
,
2018
, “
Elastic Analysis of Auxetic Cellular Structure Consisting of Re-Entrant Hexagonal Cells Using a Strain-Based Expansion Homogenization Method
,”
Mater. Des.
,
160
, pp.
284
293
.
34.
Dirrenberger
,
J.
,
Forest
,
S.
,
Jeulin
,
D.
, and
Colin
,
C.
,
2011
, “
Homogenization of Periodic Auxetic Materials
,”
Procedia Eng.
,
10
, pp.
1847
1852
.
35.
Albertini
,
F.
,
Dirrenberger
,
J.
,
Molotnikov
,
A.
, and
Sollogoub
,
C.
,
2019
, “
Computational Investigation of the Effective Mechanical Behavior for 3-D Pre-Buckled Auxetic Lattices
,”
ASME J. Appl. Mech.
,
86
(
11
), p.
111003
.
36.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Schajer
,
G.
, and
Robertson
,
C.
,
1982
, “
The Mechanics of Two-Dimensional Cellular Materials
,”
Proc. R. Soc. Lond. A Math. Phys. Sci.
,
382
(
1782
), pp.
25
42
.
37.
Ai
,
L.
, and
Gao
,
X.-L.
,
2018
, “
An Analytical Model for Star-Shaped Re-Entrant Lattice Structures With the Orthotropic Symmetry and Negative Poisson’s Ratios
,”
Int. J. Mech. Sci.
,
145
, pp.
158
170
.
38.
Peng
,
X.-L.
, and
Bargmann
,
S.
,
2021
, “
A Novel Hybrid-Honeycomb Structure: Enhanced Stiffness, Tunable Auxeticity and Negative Thermal Expansion
,”
Int. J. Mech. Sci.
,
190
, p.
106021
.
39.
Chen
,
Y.
,
Scarpa
,
F.
,
Liu
,
Y.
, and
Leng
,
J.
,
2013
, “
Elasticity of Anti-Tetrachiral Anisotropic Lattices
,”
Int. J. Solids Struct.
,
50
(
6
), pp.
996
1004
.
40.
Berdichevsky
,
V. L.
,
1977
, “
On Averaging of Periodic Systems: PMM
,”
J. Appl. Math. Mech.
,
41
(
6
), pp.
1010
1023
.
41.
Yu
,
W.
, and
Tang
,
T.
,
2007
, “
Variational Asymptotic Method for Unit Cell Homogenization of Periodically Heterogeneous Materials
,”
Int. J. Solids Struct.
,
44
(
11
), pp.
3738
3755
.
42.
Pitchai
,
P.
,
Jha
,
N. K.
,
Nair
,
R. G.
, and
Guruprasad
,
P.
,
2021
, “
A Coupled Framework of Variational Asymptotic Method-Based Homogenization Technique and Monte Carlo Approach for the Uncertainty and Sensitivity Analysis of Unidirectional Composites
,”
Compos. Struct.
,
263
, p.
113656
.
43.
Pitchai
,
P.
,
Berger
,
H.
, and
Guruprasad
,
P.
,
2020
, “
Investigating the Influence of Interface in a Three-Phase Composite Using Variational Asymptotic Method-Based Homogenization Technique
,”
Compos. Struct.
,
233
, p.
111562
.
44.
Kunin
,
I. A.
,
2012
,
Elastic Media With Microstructure I: One-Dimensional Models
, 1st ed.,
Springer
,
Berlin/Hiedelberg
.
45.
Tang
,
C.
,
Li
,
L.
,
Wang
,
L.
,
Herencia
,
V. Z.
, and
Ren
,
J.
,
2020
, “
Numerical and Experimental Studies on the Deformation of Missing-Rib and Mixed Structures Under Compression
,”
Phys. Status Solidi B
,
257
(
10
), p.
2000150
.
46.
Omairey
,
S. L.
,
Dunning
,
P. D.
, and
Sriramula
,
S.
,
2019
, “
Development of an ABAQUS Plugin Tool for Periodic RVE Homogenization
,”
Eng. Comput.
,
35
(
2
), pp.
567
577
.
47.
Dos Reis
,
F.
, and
Ganghoffer
,
J.
,
2012
, “
Equivalent Mechanical Properties of Auxetic Lattices From Discrete Homogenization
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
314
321
.
48.
Prall
,
D.
, and
Lakes
,
R.
,
1997
, “
Properties of a Chiral Honeycomb With a Poisson’s Ratio of −1
,”
Int. J. Mech. Sci.
,
39
(
3
), pp.
305
314
.
49.
Elipe
,
A.
, and
Lantada
,
J. C.
, and
D
,
A.
,
2012
, “
Comparative Study of Auxetic Geometries by Means of Computer-Aided Design and Engineering
,”
Smart Mater. Struct.
,
21
(
10
), p.
105004
.
50.
Theocaris
,
P.
,
Stavroulakis
,
G.
, and
Panagiotopoulos
,
P.
,
1997
, “
Negative Poisson’s Ratios in Composites With Star-Shaped Inclusions: A Numerical Homogenization Approach
,”
Arch. Appl. Mech.
,
67
(
4
), pp.
274
286
.
51.
Grima
,
J. N.
,
Gatt
,
R.
,
Alderson
,
A.
, and
Evans
,
K.
,
2005
, “
On the Potential of Connected Stars as Auxetic Systems
,”
Mol. Simul.
,
31
(
13
), pp.
925
935
.
52.
Shokri Rad
,
M.
,
Ahmad
,
Z.
, and
Alias
,
A.
,
2015
, “
Computational Approach in Formulating Mechanical Characteristics of 3-D Star Honeycomb Auxetic Structure
,”
Adv. Mater. Sci. Eng.
,
2015
, pp.
1
11
.
You do not currently have access to this content.