Abstract

We propose the novel design, development, and implementation of the well-known generalized single step single solve (GS4) family of algorithms into the differential algebraic equation framework which not only allows altogether different numerical time integration algorithms within the GS4 family in each of the different subdomains but also additionally allows for the selection of different space discretized methods such as the finite element method and particle methods, and other spatial methods as well in a single analysis unlike existing state-of-the-art. For the first time, the user has the flexibility and robustness to embed different algorithms for time integration and different spatial methods for space discretization in a single analysis. In addition, the GS4 family enables a wide variety of choices of time integration methods in a single analysis and also ensures the second-order accuracy in time of all primary variables and Lagrange multipliers. This is not possible to date. However, the present framework provides the fusion of a wide variety of choices of time discretized methods and spatial methods and has the bandwidth and depth to engage in various types of research investigations as well and features for fine tuning of numerical simulations. It provides generality/versatility of the computational framework incorporating subdomains with different spatial and time integration algorithms with improved accuracy. The robustness and accuracy of the present work is not feasible in the current state of technology. Various numerical examples illustrate the significant capabilities and generality and effectiveness for general nonlinear dynamics.

References

1.
Murray
,
D.
, and
Wilson
,
E.
,
1969
, “
Finite-Element Large Deflection Analysis of Plates
,”
J. Eng. Mech. Div.
,
95
(
1
), pp.
143
166
.
2.
Felippa
,
C.
,
1968
, “
Refined Finite Element Analysis of Linear and Nonlinear Two-Dimensional Structures
,” Ph.D. Dissertation,
Department of Civil Engineering, University of California at Berkeley
,
Berkeley, CA
3.
Belytschko
,
T.
, and
Hsieh
,
B.
,
1974
, “
Nonlinear Transient Analysis of Shells and Solids of Revolution by Convected Elements
,”
AIAA J.
,
12
(
8
), pp.
1031
1035
.
4.
Constantino
,
C.
,
1967
, “
Finite Element Approach to Stress Wave Problems
,”
J. Eng. Mech.
,
93
(
2
), pp.
153
176
.
5.
Gallagher
,
R.
,
1962
, “
Stress Analysis of Heated Complex Shapes
,”
ARS J.
,
32
(
5
), pp.
700
707
.
6.
Oden
,
J.
,
2006
,
Finite Elements of Nonlinear Continua
,
Courier Corporation
,
New York
.
7.
Malone
,
D.
, and
Connor
,
J.
,
1971
, “
Finite Elements and Dynamic Viscoelasticity
,”
J. Eng. Mech. Div.
,
97
(
4
), pp.
1145
1158
.
8.
Wu
,
R.
, and
Witmer
,
E.
,
1971
, “
Finite-Element Analysis of Large Elastic-Plastic Transient Deformations of Simple Structures
,”
AIAA J.
,
9
(
9
), pp.
1719
1724
.
9.
Hartzman
,
M.
, and
Hutchinson
,
J.
,
1972
, “
Nonlinear Dynamics of Solids by the Finite Element Method
,”
Comput. Struct.
,
2
(
1–2
), pp.
47
77
.
10.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(
3
), pp.
375
389
.
11.
Lucy
,
L. B.
,
1977
, “
A Numerical Approach to the Testing of the Fission Hypothesis
,”
Astron. J.
,
82
(
12
), pp.
1013
1024
.
12.
Benz
,
W.
,
1990
, “Smooth Particle Hydrodynamics: A Review,”
The Numerical Modelling of Nonlinear Stellar Pulsations
,
J. R.
Buchler
, ed.,
Springer Netherlands
,
Dordrecht
, pp.
269
288
.
13.
Liu
,
G. R.
, and
Liu
,
M. B.
,
2003
,
Smoothed Particle Hydrodynamics: A Meshfree Particle Method
,
World Scientific
,
Singapore
.
14.
Koshizuka
,
S.
, and
Oka
,
Y.
,
1996
, “
Moving-Particle Semi-Implicit Method for Fragmentation of Imcompressible Fluid
,”
Nucl. Sci. Eng.
,
123
(
3
), pp.
421
434
.
15.
Koshizuka
,
S.
,
Nobe
,
A.
, and
Oka
,
Y.
,
1998
, “
Numerical Analysis of Breaking Waves Using the Moving Particle Semi-Implicit Method
,”
Int. J. Numer. Methods Fluids
,
26
(
7
), pp.
751
769
.
16.
Silling
,
S. A.
,
2000
, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
175
209
.
17.
Silling
,
S. A.
, and
Lehoucq
,
R. B.
,
2010
,
Peridynamic Theory of Solid Mechanics
,
Elsevier
,
Amsterdam
, pp.
73
168
.
18.
Seleson
,
P.
,
Parks
,
M.
,
Gunzburger
,
M.
, and
Lehoucq
,
R. B.
,
2009
, “
Peridynamics as an Upscaling of Molecular Dynamics
,”
Multiscale Model. Simul.
,
8
(
1
), pp.
204
227
.
19.
Sladek
,
J.
,
Stanak
,
P.
,
Han
,
Z.
,
Sladek
,
V.
, and
Atluri
,
S. N.
,
2013
, “
Applications of the MLPG Method in Engineering & Sciences: A Review
,”
Comput. Model. Eng. Sci.
,
92
(
5
), pp.
423
475
.
20.
Li
,
J.
,
Wang
,
X.
, and
Lee
,
J. D.
,
2012
, “
Multiple Time Scale Algorithm for Multiscale Material Modeling
,”
Comput. Model. Eng. Sci.
,
85
(
5
), p.
463
.
21.
Macek
,
R. W.
, and
Silling
,
S. A.
,
2007
, “
Peridynamics Via Finite Element Analysis
,”
Finite Elem. Anal. Des.
,
43
(
15
), pp.
1169
1178
.
22.
Kilic
,
B.
, and
Madenci
,
E.
,
2010
, “
Coupling of Peridynamic Theory and the Finite Element Method
,”
J. Mech. Mater. Struct.
,
5
(
5
), pp.
707
733
.
23.
Zaccariotto
,
M.
,
Mudric
,
T.
,
Tomasi
,
D.
,
Shojaei
,
A.
, and
Galvanetto
,
U.
,
2018
, “
Coupling of FEM Meshes With Peridynamic Grids
,”
Comput. Methods Appl. Mech. Eng.
,
330
, pp.
471
497
.
24.
Frangin
,
E.
,
Marin
,
P. M.
, and
Daudeville
,
L.
,
2006
, “
Coupled Finite/Discrete Elements Method to Analyze Localized Impact on Reinforced Concrete Structure
,”
Euro-C 2006 Conference
,
Mayrhofen, Austria
,
Mar. 27–30
, pp.
89
96
.
25.
Huang
,
X.
,
Zhiwu
,
B.
,
Wang
,
L.
,
Jin
,
Y.
,
Liu
,
X.
,
Su
,
G.
, and
He
,
X.
,
2019
, “
Finite Element Method of Bond-Based Peridynamics and Its ABAQUS Implementation
,”
Eng. Fract. Mech.
,
206
, pp.
408
426
.
26.
Gravouil
,
A.
, and
Combescure
,
A.
,
2001
, “
Multi-Time-Step Explicit-Implicit Method for Non-Linear Structural Dynamics
,”
Int. J. Numer. Methods Eng.
,
50
(
1
), pp.
199
225
.
27.
Prakash
,
A.
, and
Hjelmstad
,
K.
,
2004
, “
A FETI-Based Multi-Time-Step Coupling Method for Newmark Schemes in Structural Dynamics
,”
Int. J. Numer. Methods Eng.
,
61
(
13
), pp.
2183
2204
.
28.
Karimi
,
S.
, and
Nakshatrala
,
K. B.
,
2014
, “
On Multi-Time-Step Monolithic Coupling Algorithms for Elastodynamics
,”
J. Comput. Phys.
,
273
, pp.
671
705
.
29.
Tamma
,
K. K.
,
Zhou
,
X.
, and
Sha
,
D.
,
2000
, “
The Time Dimension: A Theory Towards the Evolution, Classification, Characterization and Design of Computational Algorithms for Transient/Dynamic Applications
,”
Archiv. Comput. Methods Eng.
,
7
(
2
), pp.
67
290
.
30.
Zhou
,
X.
, and
Tamma
,
K. K.
,
2004
, “
Design, Analysis, and Synthesis of Generalized Single Step Single Solve and Optimal Algorithms for Structural Dynamics
,”
Int. J. Numer. Methods Eng.
,
59
(
5
), pp.
597
668
.
31.
Har
,
J.
, and
Tamma
,
K. K.
,
2012
,
Advances in Computational Dynamics of Particles, Materials and Structures
,
John Wiley & Sons
,
Chichester, UK
.
32.
Deokar
,
R.
,
Maxam
,
D.
, and
Tamma
,
K. K.
,
2018
, “
A Novel and Simple a Posteriori Error Estimator for LMS Methods Under the Umbrella of GSSSS Framework: Adaptive Time Stepping in Second-Order Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
334
, pp.
414
439
.
33.
Wang
,
Y.
,
Xue
,
T.
,
Tamma
,
K. K.
,
Maxam
,
D.
, and
Qin
,
G.
,
2021
, “
A Three-Time-Level a Posteriori Error Estimator for GS4-2 Framework: Adaptive Time Stepping for Second-Order Transient Systems
,”
Comput. Methods Appl. Mech. Eng.
,
384
, p.
113920
.
34.
Maxam
,
D. J.
, and
Tamma
,
K. K.
,
2022
, “
A Re-Evaluation of Overshooting in Time Integration Schemes: The Neglected Effect of Physical Damping in the Starting Procedure
,”
Int. J. Numer. Methods Eng.
,
123
(
12
), pp.
2683
2704
.
35.
Masuri
,
S.
,
Hoitink
,
A.
,
Zhou
,
X.
, and
Tamma
,
K. K.
,
2009
, “
Algorithms by Design: Part II—A Novel Normalized Time Weighted Residual Methodology and Design of a Family of Symplectic-Momentum Conserving Algorithms for Nonlinear Structural Dynamics
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
10
(
1
), pp.
27
56
.
36.
Simo
,
J. C.
,
Tarnow
,
N.
, and
Wong
,
K. K.
,
1992
, “
Exact Energy-Momentum Conserving Algorithms and Symplectic Schemes for Nonlinear Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
100
(
1
), pp.
63
116
.
37.
Broyden
,
C.
,
1965
, “
A Class of Methods for Solving Nonlinear Simultaneous Equations
,”
Math. Comput.
,
19
(
92
), pp.
577
593
.
38.
Sherman
,
J.
, and
Morrison
,
W. J.
,
1950
, “
Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix
,”
Ann. Math. Stat.
,
21
(
1
), pp.
124
127
.
39.
Prakash
,
A.
,
Taciroglu
,
E.
, and
Hjelmstad
,
K.
,
2014
, “
Computationally Efficient Multi-Time-Step Method for Partitioned Time Integration of Highly Nonlinear Structural Dynamics
,”
Comput. Struct.
,
133
(
1
), pp.
51
63
.
40.
Ha
,
Y. D.
, and
Bobaru
,
F.
,
2010
, “
Studies of Dynamic Crack Propagation and Crack Branching With Peridynamics
,”
Int. J. Fract.
,
162
(
12
), pp.
229
244
.
You do not currently have access to this content.