Abstract

The equilibrium positions of a dipole of edge dislocations embedded in a nanostructure composed of a strained two-dimensional layer buried in an infinite-size matrix with a rectangular nanowire located at the upper layer–matrix interface have been determined from a Peach–Koëhler force calculation. The location of the unstable and stable equilibrium positions of the dislocations of the dipole gliding in the horizontal plane has been specified in the nanostructure versus the misfit strain and nanowire aspect ratio. The critical misfit below which the dipole has no equilibrium position has been finally determined versus the size of the nanowire.

References

1.
Kataria
,
H.
,
Metaferia
,
W.
,
Junesand
,
C.
,
Zhang
,
C.
,
Julian
,
N.
,
Bowers
,
J.
, and
Lourdudoss
,
S.
,
2014
, “
Simple Epitaxial Lateral Overgrowth Process As a Strategy for Photonic Integration on Silicon
,”
IEEE J. Sel. Top. Quant. Electron.
,
20
(
4
), pp.
380
386
.
2.
Jung
,
D.
,
Herrick
,
R.
,
Norman
,
J.
,
Turnlund
,
K.
,
Jan
,
C.
,
Feng
,
K.
,
Gossard
,
A.
, and
Bowers
,
J.
,
2018
, “
Impact of Threading Dislocation Density on the Lifetime of InAs Quantum Dot Lasers on Si
,”
Appl. Phys. Lett.
,
112
(
15
), p.
153507
.
3.
Shi
,
B.
,
Li
,
Q.
, and
Lau
,
K.
,
2017
, “
Self-Organized InAs/InAlGaAs Quantum Dots As Dislocation Filters for InP Films on (001) Si
,”
J. Cryst. Growth
,
464
(
4
), pp.
28
32
.
4.
Shriram
,
S.
,
Gourishetty
,
R.
,
Panda
,
D.
,
Das
,
D.
,
Dongre
,
S.
,
Saha
,
J.
, and
Chakrabarti
,
S.
,
2022
, “
Subsiding Strain-Induced In–Ga Intermixing in InAs/InxGa1−xAs Sub-monolayer Quantum Dots for Room Temperature Photodetectors
,”
Inf. Phys. Technol.
,
121
, p.
104047
.
5.
Sheinerman
,
A.
, and
Gutkin
,
M.
,
2001
, “
Misfit Dislocations in a Hollow Cylindrical Film Grown on a Hole Surface
,”
Scr. Mater.
,
45
(
1
), pp.
81
87
.
6.
Kolesnikova
,
A.
, and
Romanov
,
A.
,
2004
, “
Misfit Dislocation Loops and Critical Parameters of Quantum Dots and Wires
,”
Phil. Mag. Lett.
,
84
(
8
), pp.
501
506
.
7.
Fang
,
Q.
,
Liu
,
Y.
, and
Wen
,
P.
,
2009
, “
Dipole of Edge Misfit Dislocations and Critical Radius Conditions for Buried Strained Cylindrical Inhomogeneity
,”
Phil. Mag.
,
89
(
20
), pp.
1585
1595
.
8.
Zhao
,
Y.
,
Fang
,
Q.
, and
Liu
,
Y.
,
2012
, “
Edge Misfit Dislocation Formation at the Interface of a Nanopore and Infinite Substrate With Surface/Interface Effects
,”
Phil. Mag.
,
92
(
34
), pp.
4230
4249
.
9.
Shodja
,
H.
,
Enzevaee
,
C.
, and
Gutkin
,
M.
,
2015
, “
Interface Effect on the Formation of a Dipole of Screw Misfit Dislocations in an Embedded Nanowire With Uniform Shear Eigenstrain Field
,”
Eur. J. Mech. A/Solids
,
51
, pp.
154
159
.
10.
Zhao
,
J.
,
Liu
,
J.
,
Kang
,
G.
,
An
,
L.
, and
Zhang
,
X.
,
2017
, “
The Competitive Nucleation of Misfit Dislocation Dipole and Misfit Extended Dislocation Dipole in Nanocomposites
,”
Acta Mech.
,
228
(
7
), pp.
2541
2554
.
11.
Gosling
,
T.
,
1996
, “
The Stresses Due to Arrays of Inclusions and Dislocations of Infinite Length in an Anisotropic Half Space. Application to Strained Semiconductor
,”
Phil. Mag. A
,
73
(
1
), pp.
11
45
.
12.
Gutkin
,
M.
,
Ovid’ko
,
I.
, and
Sheinerman
,
A.
,
2003
, “
Misfit Dislocations in Composites with Nanowires
,”
J. Phys. Condens. Matter
,
15
(
21
), pp.
3539
3554
.
13.
Ovid’ko
,
I.
, and
Sheinerman
,
A.
,
2006
, “
Nanoparticles As Dislocation Sources in Nanocomposites
,”
J. Phys.: Condens. Matter
,
18
(
19
), pp.
L225
L232
.
14.
Colin
,
J.
,
2016
, “
Generation of a Dipole of Misfit Dislocations in an Axisymmetrical Precipitate Embedded in a Semi-Infinite Matrix
,”
Int. J. Solids Struct.
,
82
, pp.
9
15
.
15.
Colin
,
J.
,
2016
, “
Formation of a Prismatic Dislocation Loop in the Interface of a Circular Cylindrical Inclusion Embedded in a Thin Slab
,”
ASME J. Appl. Mech.
,
83
(
2
), p.
021006
.
16.
Mikaelyana
,
K.
,
Gutkin
,
M.
,
Borodin
,
E.
, and
Romanov
,
A. E.
,
2019
, “
Dislocation Emission From the Edge of a Misfitting Nanowire Embedded in a Free-Standing Nanolayer
,”
Int. J. Solids Struct.
,
161
, pp.
127
135
.
17.
Colin
,
J.
,
2019
, “
Dislocation Formation From the Free-Surface of a Two-Phase Solid
,”
Mech. Mat.
,
137
, p.
103094
.
18.
Ovid’ko
,
I.
, and
Sheinerman
,
A.
,
2004
, “
Enhanced Formation of Nanowires and Quantum Dots on Dislocated Substrates
,”
J. Phys.: Condens. Matter
,
16
(
12
), pp.
2161
2170
.
19.
Timoshenko
,
S.
, and
Goodier
,
J.
,
1951
,
Theory of Elasticity
,
Mc Graw-Hill Book Company, Inc.
,
New York
.
20.
Hirth
,
J.
, and
Lothe
,
J.
,
1982
,
Theory of Dislocations
,
John Wiley & Sons, Wiley Interscience Publication
,
New York
.
21.
Jagannadham
,
J.
, and
Marcinkowski
,
M.
,
1978
, “
Comparison of the Image and Surface Dislocation Models
,”
Phys. Stat. Sol. (a)
,
50
(
1
), pp.
293
302
.
22.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
,
Martinus Nijhoff Publishers
,
Dordrecht, The Netherlands
.
23.
Peach
,
M.
, and
Köhler
,
J.
,
1950
, “
The Forces Exerted on Dislocations and the Stress Fields Produced by Them
,”
Phys. Rev.
,
80
(
3
), pp.
436
439
.
You do not currently have access to this content.