Abstract

The present work is focused on the investigation of tetra-anti-chiral structures by means of numerical and analytical methods. Specimens were evaluated under compressive load using analytical and numerical methods. The paper summarizes a theoretical solution for the estimate of Poisson’s ratio and the plateau force. The models can handle structures with various configurations, such as the radius of the connection node, lengths, and thickness of the ligaments. A section dedicated to the evaluation of the buckling load is included to extend the investigation of the behavior under compressive loads. The theoretical model is based on Euler’s formula, and a series of amendments are performed to adapt the formula to the analysis of chiral structures. Throughout the paper, theoretical results are compared with results from the simulations to validate the principles stated. Two sets of numerical models were developed: a fully 3D model using hexahedral finite elements and a 2.5D model using a beam finite element model. An overall comparison of results is presented, showing a good agreement between datasets. The present work might set the background for future activities, allowing for a selection of individual investigation methods.

References

1.
Evans
,
K. E.
,
Nkansah
,
M. A.
,
Hutchchinson
,
I. J.
, and
Rogers
,
S. C.
,
1991
, “
Molecular Network Design
,”
Nature
,
353
(
6340
), pp.
10065
.
2.
Wu
,
W.
,
Hu
,
W.
,
Qian
,
G.
,
Liao
,
H.
,
Xu
,
X.
, and
Berto
,
F.
,
2019
, “
Mechanical Design and Multifunctional Applications of Chiral Mechanical Metamaterials: A Review
,”
Mater. Des.
,
180
, p.
107950
.
3.
Surjadi
,
J. U.
,
Gao
,
L.
,
Du
,
H.
,
Li
,
X.
,
Xiong
,
X.
,
Fang
,
N. X.
, and
Lu
,
Y.
,
2019
, “
Mechanical Metamaterials and Their Engineering Applications
,”
Adv. Eng. Mater.
,
21
(
3
), pp.
1
37
.
4.
Ha
,
N. S.
, and
Lu
,
G.
,
2020
, “
A Review of Recent Research on Bio-inspired Structures and Materials for Energy Absorption Applications
,”
Composites Part B
,
181
, p.
107496
.
5.
Zadpoor
,
A. A.
,
2019
, “
Mechanical Performance of Additively Manufactured Meta-Biomaterials
,”
Acta Biomater.
,
85
, pp.
41
59
.
6.
Zhang
,
J.
,
Lu
,
G.
, and
You
,
Z.
,
2020
, “
Large Deformation and Energy Absorption of Additively Manufactured Auxetic Materials and Structures: A Review
,”
Composites Part B
,
201
, p.
108340
.
7.
Cardoso
,
J. O.
,
Borges
,
J. P.
, and
Velhinho
,
A.
,
2021
, “
Structural Metamaterials With Negative Mechanical/Thermomechanical Indices: A Review
,”
Prog. Nat. Sci.: Mater. Int.
,
31
(
6
), pp.
801
808
.
8.
Jiang
,
W.
,
Ren
,
X.
,
Wang
,
S. L.
,
Zhang
,
X. G.
,
Zhang
,
X. Y.
,
Luo
,
C.
,
Xie
,
Y. M.
,
Scarpa
,
F.
,
Alderson
,
A.
, and
Evans
,
K. E.
,
2022
, “
Manufacturing, Characteristics and Applications of Auxetic Foams: A State-of-the-art Review
,”
Composites Part B
,
235
, p.
109733
.
9.
Luo
,
C.
,
Han
,
C. Z.
,
Zhang
,
X. Y.
,
Zhang
,
X. G.
,
Ren
,
X.
, and
Xie
,
Y. M.
,
2021
, “
Design, Manufacturing and Applications of Auxetic Tubular Structures: A Review
,”
Thin Walled Struct.
,
163
, p.
107682
.
10.
Sun
,
G.
,
Chen
,
D.
,
Zhu
,
G.
, and
Li
,
Q.
,
2022
, “
Lightweight Hybrid Materials and Structures for Energy Absorption: A State-of-the-art Review and Outlook
,”
Thin Walled Struct.
,
172
, p.
108760
.
11.
Kolken
,
H. M. A.
, and
Zadpoor
,
A. A.
,
2017
, “
Auxetic Mechanical Metamaterials
,”
RSC Adv.
,
7
(
9
), pp.
5111
5129
.
12.
Ren
,
X.
,
Das
,
R.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Xie
,
Y. M.
,
2018
, “
Auxetic Metamaterials and Structures: A Review
,”
Smart Mater. Struct.
,
27
(
2
), p.
023001
.
13.
Körner
,
C.
, and
Liebold-Ribeiro
,
Y.
,
2015
, “
A Systematic Approach to Identify Cellular Auxetic Materials
,”
Smart Mater. Struct.
,
24
(
2
), p.
025013
.
14.
Wu
,
W.
,
Song
,
X.
,
Liang
,
J.
,
Xia
,
R.
,
Qian
,
G.
, and
Fang
,
D.
,
2018
, “
Mechanical Properties of Anti-Tetrachiral Auxetic Stents
,”
Compos. Struct.
,
185
, pp.
381
392
.
15.
Lee
,
W.
,
Jeong
,
Y.
,
Yoo
,
J.
,
Huh
,
H.
,
Park
,
S. J.
,
Park
,
S. H.
, and
Yoon
,
J.
,
2019
, “
Effect of Auxetic Structures on Crash Behavior of Cylindrical Tube
,”
Compos. Struct.
,
208
, pp.
836
846
.
16.
Sanami
,
M.
,
Ravirala
,
N.
,
Alderson
,
K.
, and
Alderson
,
A.
,
2014
, “
Auxetic Materials for Sports Applications
,”
Procedia Eng.
,
72
, pp.
453
458
.
17.
Yadav
,
R.
,
Tirumali
,
M.
,
Wang
,
X.
,
Naebe
,
M.
, and
Kandasubramanian
,
B.
,
2019
, “
Polymer Composite for Antistatic Application in Aerospace
,”
Def. Technol.
,
16
(
1
), pp.
107
118
.
18.
Zhang
,
Q.
,
Yang
,
X.
,
Li
,
P.
,
Huang
,
G.
,
Feng
,
S.
,
Shen
,
C.
,
Han
,
B.
, et al
,
2015
, “
Bioinspired Engineering of Honeycomb Structure—Using Nature to Inspire Human Innovation
,”
Prog. Mater. Sci.
,
74
, pp.
332
400
.
19.
Dogan
,
E.
,
Bhusal
,
A.
,
Cecen
,
B.
, and
Miri
,
A. K.
,
2020
, “
3D Printing Metamaterials Towards Tissue Engineering
,”
Appl. Mater. Today
,
20
, p.
100752
.
20.
Kelkar
,
P. U.
,
Kim
,
H. S.
,
Cho
,
K. H.
,
Kwak
,
J. Y.
,
Kang
,
C. Y.
, and
Song
,
H. C.
,
2020
, “
Cellular Auxetic Structures for Mechanical Metamaterials: A Review
,”
Sensors (Switzerland)
,
20
(
2
), p.
3132
.
21.
Gao
,
J.
,
Xue
,
H.
,
Gao
,
L.
,
Luo
,
Z.
,
2019
, “
Topology Optimization for Auxetic Metamaterials Based on Isogeometric Analysis
,”
Comput. Meth. Appl. Mech. Eng.
,
352
, pp.
211
236
.
22.
Mousanezhad
,
D.
,
Haghpanah
,
B.
,
Ghosh
,
R.
,
Hamouda
,
A. M.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
,
2016
, “
Elastic Properties of Chiral, Anti-chiral, and Hierarchical Honeycombs: A Simple Energy-Based Approach
,”
Theor. Appl. Mech. Lett.
,
6
(
2
), pp.
81
96
.
23.
Rafsanjani
,
A.
, and
Pasini
,
D.
,
2016
, “
Bistable Auxetic Mechanical Metamaterials Inspired by Ancient Geometric Motifs
,”
Extrem. Mech. Lett.
,
9
, pp.
291
296
.
24.
Ingrole
,
A.
,
Hao
,
A.
, and
Liang
,
R.
,
2017
, “
Design and Modeling of Auxetic and Hybrid Honeycomb Structures for In-plane Property Enhancement
,”
Mater. Des.
,
117
, pp.
72
83
.
25.
Wang
,
H.
,
Lu
,
Z.
,
Yang
,
Z.
, and
Li
,
X.
,
2019
, “
In-plane Dynamic Crushing Behaviors of a Novel Auxetic Honeycomb With Two Plateau Stress Regions
,”
Int. J. Mech. Sci.
,
151
, pp.
746
759
.
26.
Zhang
,
X.-C.
,
An
,
C.-C.
,
Shen
,
Z.-F.
,
Wu
,
H.-X.
,
Yang
,
W.-G.
, and
Bai
,
J.-P.
,
2020
, “
Dynamic Crushing Responses of Bio-inspired Re-entrant Auxetic Honeycombs Under In-plane Impact Loading
,”
Mater. Today Commun.
,
23
, p.
100918
.
27.
Gao
,
D.
,
Wang
,
S.
,
Zhang
,
M.
, and
Zhang
,
C.
,
2021
, “
Experimental and Numerical Investigation on In-plane Impact Behaviour of Chiral Auxetic Structure
,”
Compos. Struct.
,
267
, p.
113922
.
28.
Wei
,
L.
,
Zhao
,
X.
,
Yu
,
Q.
,
Zhang
,
W.
, and
Zhu
,
G.
,
2021
, “
In-Plane Compression Behaviors of the Auxetic Star Honeycomb: Experimental and Numerical Simulation
,”
Aerosp. Sci. Technol.
,
115
, p.
106797
.
29.
Wei
,
L.
,
Zhao
,
X.
,
Yu
,
Q.
, and
Zhu
,
G.
,
2020
, “
A Novel Star Auxetic Honeycomb With Enhanced In-plane Crushing Strength
,”
Thin Walled Struct.
,
149
, p.
106623
.
30.
Neelakantan
,
S.
,
Tan
,
J.-C.
, and
Markaki
,
A. E.
,
2015
, “
Out-of-Plane Auxeticity in Sintered Fibre Network Mats
,”
Scr. Mater.
,
106
, pp.
30
33
.
31.
Rawal
,
A.
,
Sharma
,
S.
,
Singh
,
D.
,
Jangir
,
N. K.
,
Saraswat
,
H.
,
Sebők
,
D.
,
Kukovecz
,
A.
,
Hietel
,
D.
,
Dauner
,
M.
, and
Onal
,
L.
,
2020
, “
Out-of-Plane Auxetic Nonwoven as a Designer Meta-Biomaterial
,”
J. Mech. Behav. Biomed. Mater.
,
112
, p.
104069
.
32.
Alomarah
,
A.
,
Masood
,
S. H.
, and
Ruan
,
D.
,
2020
, “
Out-of-Plane and In-plane Compression of Additively Manufactured Auxetic Structures
,”
Aerosp. Sci. Technol.
,
106
, p.
106107
.
33.
Rawal
,
A.
,
Sharma
,
S.
,
Kumar
,
V.
,
Rao
,
P. V. K.
,
Saraswat
,
H.
,
Jangir
,
N. K.
,
Kumar
,
R.
,
Hietel
,
D.
, and
Dauner
,
M.
,
2019
, “
Micromechanical Analysis of Nonwoven Materials With Tunable Out-of-Plane Auxetic Behavior
,”
Mech. Mater.
,
129
, pp.
236
245
.
34.
Novak
,
N.
,
Krstulović-Opara
,
L.
,
Ren
,
Z.
, and
Vesenjak
,
M.
,
2020
, “
Compression and Shear Behaviour of Graded Chiral Auxetic Structures
,”
Mech. Mater.
,
148
, p.
103524
.
35.
Tabacu
,
S.
,
Predoiu
,
P.
, and
Negrea
,
R.
,
2021
, “
A Theoretical Model for the Estimate of Plateau Force for the Crushing Process of 3D Auxetic Anti-Tetra Chiral Structures
,”
Int. J. Mech. Sci.
,
199
, p.
106405
.
36.
Asemi
,
K.
, and
Shariyat
,
M.
,
2016
, “
Three-Dimensional Biaxial Post-Buckling Analysis of Heterogeneous Auxetic Rectangular Plates on Elastic Foundations by New Criteria
,”
Comput. Meth. Appl. Mech. Eng.
,
302
, pp.
1
26
.
37.
Fu
,
M. H.
,
Chen
,
Y.
, and
Hu
,
L. L.
,
2017
, “
A Novel Auxetic Honeycomb With Enhanced In-plane Stiffness and Buckling Strength
,”
Compos. Struct.
,
160
, pp.
574
585
.
38.
Zhang
,
Y.
,
Li
,
X.
, and
Liu
,
S.
,
2016
, “
Enhancing Buckling Capacity of a Rectangular Plate Under Uniaxial Compression by Utilizing an Auxetic Material
,”
Chin. J. Aeronaut.
,
29
(
4
), pp.
945
951
.
39.
Zhang
,
Y.
,
Ren
,
X.
,
Zhang
,
X. Y.
,
Huang
,
T. T.
,
Sun
,
L.
, and
Xie
,
Y. M.
,
2021
, “
A Novel Buckling-Restrained Brace With Auxetic Perforated Core: Experimental and Numerical Studies
,”
Eng. Struct.
,
249
, p.
113223
.
40.
Khakalo
,
S.
,
Balobanov
,
V.
, and
Niiranen
,
J.
,
2018
, “
Modelling Size-Dependent Bending, Buckling and Vibrations of 2D Triangular Lattices by Strain Gradient Elasticity Models: Applications to Sandwich Beams and Auxetics
,”
Int. J. Eng. Sci.
,
127
, pp.
33
52
.
41.
Panedpojaman
,
P.
,
Thepchatri
,
T.
, and
Limkatanyu
,
S.
,
2019
, “
Elastic Buckling of Cellular Columns Under Axial Compression
,”
Thin Walled Struct.
,
145
, p.
106434
.
42.
Harvey
,
P. S.
, and
Cain
,
T. M. N.
,
2020
, “
Buckling of Elastic Columns With Initial Imperfections and Load Eccentricity
,”
Structures
,
23
, pp.
660
664
.
43.
Emam
,
S.
, and
Lacarbonara
,
W.
,
2022
, “
A Review on Buckling and Postbuckling of Thin Elastic Beams
,”
Eur. J. Mech. A. Solids.
,
92
, p.
104449
.
44.
Lian
,
X. G.
,
Pan
,
L.
,
Lu
,
L. X.
, and
Wang
,
J.
,
2020
, “
Investigation of Energy Absorption Characteristics of Square Paper Tubes Subjected to Axial Loading
,”
Thin Walled Struct.
,
150
, p.
104210
.
45.
Guo
,
Y.
,
Zhang
,
J.
,
Chen
,
L. L.
,
Du
,
B.
,
Liu
,
H.
,
Chen
,
L. L.
,
Li
,
W.
, and
Liu
,
Y.
,
2020
, “
Deformation Behaviors and Energy Absorption of Auxetic Lattice Cylindrical Structures Under Axial Crushing Load
,”
Aerosp. Sci. Technol.
,
98
, p.
105662
.
46.
Wang
,
Q.
,
Yang
,
Z.
,
Lu
,
Z.
, and
Li
,
X.
,
2020
, “
Mechanical Responses of 3D Cross-Chiral Auxetic Materials Under Uniaxial Compression
,”
Mater. Des.
,
186
, p.
108226
.
47.
Hu
,
L. L.
,
Luo
,
Z. R.
, and
Yin
,
Q. Y.
,
2019
, “
Negative Poisson’s Ratio Effect of Re-entrant Anti-Trichiral Honeycombs Under Large Deformation
,”
Thin Walled Struct.
,
141
, pp.
283
292
.
49.
Tabacu
,
S.
, and
Ducu
,
C.
,
2020
, “
Numerical Investigations of 3D Printed Structures Under Compressive Loads Using Damage and Fracture Criterion: Experiments, Parameter Identification, and Validation
,”
Extrem. Mech. Lett.
,
39
, p.
100775
.
50.
Tabacu
,
S.
,
Negrea
,
R. F.
, and
Negrea
,
D.
,
2020
, “
Experimental, Numerical and Analytical Investigation of 2D Tetra-Anti-chiral Structure Under Compressive Loads
,”
Thin Walled Struct.
,
155
, p.
106929
.
51.
Gao
,
Q.
,
Ding
,
Z.
, and
Liao
,
W.-H.
,
2022
, “
Effective Elastic Properties of Irregular Auxetic Structures
,”
Compos. Struct.
,
287
, p.
115269
.
52.
Gao
,
Q.
,
Tan
,
C. A.
,
Hulbert
,
G.
, and
Wang
,
L.
,
2020
, “
Geometrically Nonlinear Mechanical Properties of Auxetic Double-V Microstructures With Negative Poisson’s Ratio
,”
Eur. J. Mech. A. Solids
,
80
, p.
103933
.
53.
Chen
,
Z.
,
Wu
,
X.
,
Xie
,
Y. M.
,
Wang
,
Z.
, and
Zhou
,
S.
,
2020
, “
Re-Entrant Auxetic Lattices With Enhanced Stiffness: A Numerical Study
,”
Int. J. Mech. Sci.
,
178
, p.
105619
.
54.
Jiang
,
Y.
,
Rudra
,
B.
,
Shim
,
J.
, and
Li
,
Y.
,
2019
, “
Limiting Strain for Auxeticity Under Large Compressive Deformation: Chiral vs. Re-Entrant Cellular Solids
,”
Int. J. Solids Struct.
,
162
, pp.
87
95
.
55.
Prall
,
D.
, and
Lakes
,
R. S.
,
1997
, “
Properties of a Chiral Honeycomb With a Poisson’s Ratio of −1
,”
Int. J. Mech. Sci.
,
39
(
3
), pp.
305
314
.
56.
Wu
,
W.
,
Tao
,
Y.
,
Xia
,
Y.
,
Chen
,
J.
,
Lei
,
H.
,
Sun
,
L.
, and
Fang
,
D.
,
2017
, “
Mechanical Properties of Hierarchical Anti-Tetrachiral Metastructures
,”
Extrem. Mech. Lett.
,
16
, pp.
18
32
.
57.
Zhong
,
R.
,
Fu
,
M.
,
Yin
,
Q.
,
Xu
,
O.
, and
Hu
,
L.
,
2019
, “
Special Characteristics of Tetrachiral Honeycombs Under Large Deformation
,”
Int. J. Solids Struct.
,
169
, pp.
166
176
.
58.
Yu
,
X.
,
Zhou
,
J.
,
Liang
,
H.
,
Jiang
,
Z.
, and
Wu
,
L.
,
2018
, “
Mechanical Metamaterials Associated With Stiffness, Rigidity and Compressibility: A Brief Review
,”
Prog. Mater. Sci.
,
94
, pp.
114
173
.
59.
Ren
,
X.
,
Shen
,
J.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Xie
,
Y. M.
,
2018
, “
Design and Characterisation of a Tuneable 3D Buckling-Induced Auxetic Metamaterial
,”
Mater. Des.
,
139
, pp.
336
342
.
60.
Meena
,
K.
, and
Singamneni
,
S.
,
2019
, “
A New Auxetic Structure With Significantly Reduced Stress Concentration Effects
,”
Mater. Des.
,
173
, p.
107779
.
61.
Wang
,
T.
,
Wang
,
L.
,
Ma
,
Z.
, and
Hulbert
,
G. M.
,
2018
, “
Elastic Analysis of Auxetic Cellular Structure Consisting of Re-entrant Hexagonal Cells Using a Strain-Based Expansion Homogenization Method
,”
Mater. Des.
,
160
, pp.
284
293
.
62.
An
,
X.
,
Gao
,
Y.
,
Fang
,
J.
,
Sun
,
G.
, and
Li
,
Q.
,
2015
, “
Crashworthiness Design for Foam-Filled Thin-Walled Structures With Functionally Lateral Graded Thickness Sheets
,”
Thin Walled Struct.
,
91
, pp.
63
71
.
63.
Zhang
,
W.
,
Neville
,
R.
,
Zhang
,
D.
,
Scarpa
,
F.
,
Wang
,
L.
, and
Lakes
,
R.
,
2018
, “
The Two-Dimensional Elasticity of a Chiral Hinge Lattice Metamaterial
,”
Int. J. Solids Struct.
,
141–142
, pp.
254
263
.
64.
Liu
,
J.
,
Chen
,
W.
,
Hao
,
H.
, and
Wang
,
Z.
,
2021
, “
In-Plane Crushing Behaviors of Hexagonal Honeycombs With Different Poisson’s Ratio Induced by Topological Diversity
,”
Thin Walled Struct.
,
159
, p.
107223
.
You do not currently have access to this content.