Abstract

Legged locomotion has advantages when one is navigating a flowable ground or a terrain with obstacles that are common in nature. With traditional terra-mechanics, one can capture large wheel–terrain interactions. However, legged motion on a granular substrate is difficult to investigate by using classical terra-mechanics due to sharp edge contact. Recent studies have shown that a continuum simulation can serve as an accurate tool for simulating dynamic interactions with granular material at laboratory and field scales. Spurred by this, a computational framework based on the smoothed particle hydrodynamics (SPH) method has been developed for the investigation of single robot appendage interaction with a granular system. This framework has been validated by using experimental results and extended to study robot appendages with different shapes and stride frequencies. The mechanics’ results are expected to help robot navigation and exploration in unknown and complex terrains.

References

1.
Li
,
C.
,
Zhang
,
T.
, and
Goldman
,
D. I.
,
2013
, “
A Terradynamics of Legged Locomotion on Granular Media
,”
Science
,
339
(
6126
), pp.
1408
1412
. 10.1126/science.1229163
2.
Lee
,
D.
,
Kim
,
G.
,
Kim
,
D.
,
Myung
,
H.
, and
Choi
,
H.-T.
,
2012
, “
Vision-Based Object Detection and Tracking for Autonomous Navigation of Underwater Robots
,”
Ocean Eng.
,
48
, pp.
59
68
. 10.1016/j.oceaneng.2012.04.006
3.
Cabrera
,
F. J. C.
,
2016
, “In-Situ Soil Sensing for Planetary Micro-Rovers With Hybrid Wheel-Leg Systems,” Ph.D. thesis,
University of Surrey
,
Guildford, UK
.
4.
Li
,
C.
,
Umbanhowar
,
P. B.
,
Komsuoglu
,
H.
,
Koditschek
,
D. E.
, and
Goldman
,
D. I.
,
2009
, “
Sensitive Dependence of the Motion of a Legged Robot on Granular Media
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
9
), pp.
3029
3034
. 10.1073/pnas.0809095106
5.
Ding
,
L.
,
Gao
,
H.
,
Deng
,
Z.
,
Nagatani
,
K.
, and
Yoshida
,
K.
,
2011
, “
Experimental Study and Analysis on Driving Wheels’ Performance for Planetary Exploration Rovers Moving in Deformable Soil
,”
J. Terramech.
,
48
(
1
), pp.
27
45
. 10.1016/j.jterra.2010.08.001
6.
Bekker
,
M. G.
,
1969
, “Introduction to Terrain-Vehicle Systems,” Part i: The terrain. Part ii: The Vehicle, Michigan University, Ann Arbor, MI, Technical Report.
7.
Ding
,
L.
,
Nagatani
,
K.
,
Sato
,
K.
,
Mora
,
A.
,
Yoshida
,
K.
,
Gao
,
H.
, and
Deng
,
Z.
,
2010
, “
Terramechanics-Based High-Fidelity Dynamics Simulation for Wheeled Mobile Robot on Deformable Rough Terrain
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 4–8
,
IEEE
, pp.
4922
4927
.
8.
Li
,
C.
,
Zhang
,
T.
, and
Goldman
,
D. I.
,
2012
, “
A Resistive Force Model for Legged Locomotion on Granular Media,” Adaptive Mobile Robotics
,
Proceedings of the 15th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
,
Baltimore, MD
,
July 23–26
,
A. K. M.
Azad
,
N. J.
Cowan
,
M. O.
Tokhi
,
G. S.
Virk
, and
R. D.
Eastman
, eds.,
World Scientific
, p.
904
. 10.1142/8546
9.
Agarwal
,
S.
,
Senatore
,
C.
,
Zhang
,
T.
,
Kingsbury
,
M.
,
Iagnemma
,
K.
,
Goldman
,
D. I.
, and
Kamrin
,
K.
,
2019
, “
Modeling of the Interaction of Rigid Wheels With Dry Granular Media
,”
J. Terramech.
,
85
, pp.
1
14
. 10.1016/j.jterra.2019.06.001
10.
Wang
,
G.
,
Riaz
,
A.
, and
Balachandran
,
B.
,
2020
, “
Smooth Particle Hydrodynamics Studies of Wet Granular Column Collapses
,”
Acta Geotech.
,
15
(
5
), pp.
1205
1217
. 10.1007/s11440-019-00828-4
11.
Fern
,
E. J.
, and
Soga
,
K.
,
2016
, “
The Role of Constitutive Models in Mpm Simulations of Granular Column Collapses
,”
Acta Geotech.
,
11
(
3
), pp.
659
678
. 10.1007/s11440-016-0436-x
12.
Chen
,
W.
, and
Qiu
,
T.
,
2012
, “
Numerical Simulations for Large Deformation of Granular Materials Using Smoothed Particle Hydrodynamics Method
,”
Int. J. Geomech.
,
12
(
2
), pp.
127
135
. 10.1061/(ASCE)GM.1943-5622.0000149
13.
Dunatunga
,
S.
, and
Kamrin
,
K.
,
2015
, “
Continuum Modelling and Simulation of Granular Flows Through Their Many Phases
,”
J. Fluid. Mech.
,
779
, pp.
483
513
. 10.1017/jfm.2015.383
14.
Jop
,
P.
,
Forterre
,
Y.
, and
Pouliquen
,
O.
,
2006
, “
A Constitutive Law for Dense Granular Flows
,”
Nature
,
441
(
7094
), p.
727
. 10.1038/nature04801
15.
Hurley
,
R. C.
, and
Andrade
,
J. E.
,
2017
, “
Continuum Modeling of Rate-Dependent Granular Flows in Sph
,”
Comput. Particle Mech.
,
4
(
1
), pp.
119
130
. 10.1007/s40571-016-0132-5
16.
MiDi
,
G.
,
2004
, “
On Dense Granular Flows
,”
Euro. Phys. J. E
,
14
(
4
), pp.
341
365
. 10.1140/epje/i2003-10153-0
17.
Szewc
,
K.
,
2017
, “
Smoothed Particle Hydrodynamics Modeling of Granular Column Collapse
,”
Granular Matter
,
19
(
1
), p.
3
. 10.1007/s10035-016-0684-3
18.
Gui-rong
,
L.
,
2003
,
Smoothed Particle Hydrodynamics: A Meshfree Particle Method
,
World Scientific Publishing
,
Singapore
.
19.
Dehnen
,
W.
, and
Aly
,
H.
,
2012
, “
Improving Convergence in Smoothed Particle Hydrodynamics Simulations Without Pairing Instability
,”
Mon. Not. R. Astron. Soc.
,
425
(
2
), pp.
1068
1082
. 10.1111/j.1365-2966.2012.21439.x
20.
Marrone
,
S.
,
Antuono
,
M.
,
Colagrossi
,
A.
,
Colicchio
,
G.
,
Le Touz ’e
,
D.
, and
Graziani
,
G.
,
2011
, “
δ-sph Model for Simulating Violent Impact Flows
,”
Comput. Methods Appl. Mech. Engin.
,
200
(
13–16
), pp.
1526
1542
. 10.1016/j.cma.2010.12.016
21.
Mao
,
Z.
,
Liu
,
G.
, and
Dong
,
X.
,
2017
, “
A Comprehensive Study on the Parameters Setting in Smoothed Particle Hydrodynamics (SPH) Method Applied to Hydrodynamics Problems
,”
Comput. Geotech.
,
92
, pp.
77
95
. 10.1016/j.compgeo.2017.07.024
22.
Monaghan
,
J. J.
,
1994
, “
Simulating Free Surface Flows With Sph
,”
J. Comput. Phys.
,
110
(
2
), pp.
399
406
. 10.1006/jcph.1994.1034
23.
Nguyen
,
C. T.
,
Nguyen
,
C. T.
,
Bui
,
H. H.
,
Nguyen
,
G. D.
, and
Fukagawa
,
R.
,
2017
, “
A New Sph-Based Approach to Simulation of Granular Flows Using Viscous Damping and Stress Regularisation
,”
Landslides
,
14
(
1
), pp.
69
81
. 10.1007/s10346-016-0681-y
24.
Adami
,
S.
,
Hu
,
X.
, and
Adams
,
N. A.
,
2012
, “
A Generalized Wall Boundary Condition for Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
231
(
21
), pp.
7057
7075
. 10.1016/j.jcp.2012.05.005
You do not currently have access to this content.