Abstract

A 3D finite-strain constitutive model for shape memory alloys (SMAs) is proposed. The model can efficiently describe reversible phase transformation from austenite to self-accommodated and/or oriented martensite, (re)orientation of martensite variants, minor loops, latent heat effects, and tension–compression asymmetry based on the Eulerian logarithmic strain and the corotational logarithmic objective rate. It further accounts for smooth thermomechanical response; temperature dependence of the critical force required for (re)orientation, temperature, and load dependence of the hysteresis width; and asymmetry between forward and reverse phase transformation, and it is flexible enough to address the deformation response in the concurrent presence of several phases, i.e., when austenite, self-accommodated, and oriented martensite co-exist in the microstructure. The ability of the proposed model to describe the aforementioned deformation response characteristics of SMAs under multiaxial, thermomechanical, and nonproportional loading relies on the set of three independent internal variables, i.e., the average volume fraction of martensite variants, their preferred direction, and the magnitude of the induced inelastic strain, which further allow for an implicit description of a fourth internal variable, the volume fraction of oriented as opposed to self-accommodated martensite. The calibration of the model and its numerical implementation in an efficient scheme are presented. The model is validated against experimental results associated with complex thermomechanical paths, including tension/compression/torsion experiments, and the efficiency of its numerical implementation is verified with simulations of the response of a biomedical superelastic SMA stent and an SMA spring actuator.

References

1.
Otsuka
,
K.
, and
Wayman
,
C.
, eds.,
1999
,
Shape Memory Materials
,
Cambridge University Press
,
Cambridge, UK
.
2.
Morgan
,
N.
,
2004
, “
Medical Shape Memory Alloy Applications—The Market and Its Products
,”
Mater. Sci. Eng. A
,
378
(
1–2
), pp.
16
23
.
3.
Lagoudas
,
D.
, ed.,
2008
,
Shape Memory Alloys: Modelling and Enginnering Applications
,
Springer
,
New York
.
4.
Jani
,
J. M.
,
Leary
,
M.
,
Subic
,
A.
, and
Gibson
,
M. A.
,
2014
, “
A Review of Shape Memory Alloy Research, Applications and Opportunities
,”
Mater. Des. (1980-2015)
,
56
, pp.
1078
1113
.
5.
Barbarino
,
S.
,
Flores
,
E. S.
,
Ajaj
,
R. M.
,
Dayyani
,
I.
, and
Friswell
,
M. I.
,
2014
, “
A Review on Shape Memory Alloys With Applications to Morphing Aircraft
,”
Smart Mater. Struct.
,
23
(
6
), p.
063001
.
6.
Stebner
,
A.
, and
Brinson
,
L.
,
2013
, “
Explicit Finite Element Implementation of an Improved Three Dimensional Constitutive Model for Shape Memory Alloys
,”
Comput. Methods Appl. Mech. Eng.
,
257
, pp.
17
35
.
7.
Levitas
,
V.
, and
Preston
,
D.
,
2002
, “
Three-Dimensional Landau Theory for Multivariant Stress-Induced Martensitic Phase Transformations. II. Multivariant Phase Transformations and Stress Space Analysis
,”
Phys. Rev. B
,
66
, p.
134207
.
8.
Patoor
,
E.
,
Lagoudas
,
D. C.
,
Entchev
,
P. B.
,
Brinson
,
L. C.
, and
Gao
,
X.
,
2006
, “
Shape Memory Alloys. Part I: General Properties and Modeling of Single Crystals
,”
Mech. Mater.
,
38
(
5–6
), pp.
391
429
.
9.
Lagoudas
,
D.
,
Entchev
,
P.
,
Popov
,
P.
,
Patoor
,
E.
,
Brinson
,
L.
, and
Gao
,
X.
,
2006
, “
Shape Memory Alloys. Part II: Modeling of Polycrystals
,”
Mech. Mater.
,
38
(
5–6
), pp.
430
462
.
10.
Thamburaja
,
P.
,
2010
, “
A Finite-Deformation-Based Phenomenological Theory for Shape-Memory Alloys
,”
Int. J. Plast.
,
26
(
8
), pp.
1195
1219
.
11.
Lagoudas
,
D.
,
Hartl
,
D.
,
Chemisky
,
Y.
,
Machado
,
L.
, and
Popov
,
P.
,
2012
, “
Constitutive Model for the Numerical Analysis of Phase Transformation in Polycrystalline Shape Memory Alloys
,”
Int. J. Plast.
,
32
, pp.
155
183
.
12.
Cisse
,
C.
,
Zaki
,
W.
, and
Zineb
,
T. B.
,
2016
, “
A Review of Modeling Techniques for Advanced Effects in Shape Memory Alloy Behavior
,”
Smart Mater. Struct.
,
25
(
10
), p.
103001
.
13.
Chowdhury
,
P.
,
Patriarca
,
L.
,
Ren
,
G.
, and
Sehitoglu
,
H.
,
2016
, “
Molecular Dynamics Modeling of NiTi Superelasticity in Presence of Nanoprecipitates
,”
Int. J. Plast.
,
81
, pp.
152
167
.
14.
Paranjape
,
H. M.
,
Manchiraju
,
S.
, and
Anderson
,
P. M.
,
2016
, “
A Phase Field–Finite Element Approach to Model the Interaction Between Phase Transformations and Plasticity in Shape Memory Alloys
,”
Int. J. Plast.
,
80
, pp.
1
18
.
15.
Xiao
,
Y.
,
Zeng
,
P.
, and
Lei
,
L.
,
2018
, “
Micromechanical Modeling on Thermomechanical Coupling of Cyclically Deformed Superelastic NiTi Shape Memory Alloy
,”
Int. J. Plast.
,
107
, pp.
164
188
.
16.
Dhala
,
S.
,
Mishra
,
S.
,
Tewari
,
A.
, and
Alankar
,
A.
,
2019
, “
Modeling of Finite Deformation of Pseudoelastic NiTi Shape Memory Alloy Considering Various Inelasticity Mechanisms
,”
Int. J. Plast.
,
115
, pp.
216
237
.
17.
Zhang
,
Y.
,
Jiang
,
S.
, and
Wang
,
M.
,
2020
, “
Atomistic Investigation on Superelasticity of Niti Shape Memory Alloy With Complex Microstructures Based on Molecular Dynamics Simulation
,”
Int. J. Plast.
,
125
, pp.
27
51
.
18.
Wang
,
B.
,
Kang
,
G.
,
Wu
,
W.
,
Zhou
,
K.
,
Kan
,
Q.
, and
Yu
,
C.
,
2020
, “
Molecular Dynamics Simulations on Nanocrystalline Super-Elastic NiTi Shape Memory Alloy by Addressing Transformation Ratchetting and Its Atomic Mechanism
,”
Int. J. Plast.
,
125
, pp.
374
394
.
19.
Hossain
,
M.
, and
Baxevanis
,
T.
,
2021
, “
A Finite Strain Thermomechanically-Coupled Constitutive Model for Phase Transformation and (Transformation-Induced) Plastic Deformation in NiTi Single Crystals
,”
Int. J. Plast.
,
139
, p.
102957
.
20.
Wang
,
L.
,
Feng
,
P.
,
Xing
,
X.
,
Wu
,
Y.
, and
Liu
,
Z.
,
2021
, “
A One-Dimensional Constitutive Model for NiTi Shape Memory Alloys Considering Inelastic Strains Caused by the R-Phase Transformation
,”
J. Alloys Compd.
,
868
, p.
159192
.
21.
Zhu
,
X.
,
Chu
,
L.
, and
Dui
,
G.
,
2020
, “
Constitutive Modeling of Porous Shape Memory Alloys Using Gurson–Tvergaard–Needleman Model Under Isothermal Conditions
,”
Int. J. Appl. Mech.
,
12
(
4
), p.
2050038
.
22.
Müller
,
C.
, and
Bruhns
,
O.
,
2006
, “
A Thermodynamic Finite-Strain Model for Pseudoelastic Shape Memory Alloys
,”
Int. J. Plast.
,
22
(
9
), pp.
1658
1682
.
23.
Christ
,
D.
, and
Reese
,
S.
,
2009
, “
A Finite Element Model for Shape Memory Alloys Considering Thermomechanical Couplings at Large Strains
,”
Int. J. Solids Struct.
,
46
(
20
), pp.
3694
3709
.
24.
Arghavani
,
J.
,
Auricchio
,
F.
, and
Naghdabadi
,
R.
,
2011
, “
A Finite Strain Kinematic Hardening Constitutive Model Based on Hencky Strain: General Framework, Solution Algorithm and Application to Shape Memory Alloys
,”
Int. J. Plast.
,
27
(
6
), pp.
940
961
.
25.
Wang
,
J.
,
Moumni
,
Z.
, and
Zhang
,
W.
,
2017
, “
A Thermomechanically Coupled Finite-Strain Constitutive Model for Cyclic Pseudoelasticity of Polycrystalline Shape Memory Alloys
,”
Int. J. Plast.
,
97
, pp.
194
221
.
26.
Wang
,
J.
,
Moumni
,
Z.
,
Zhang
,
W.
, and
Zaki
,
W.
,
2017
, “
A Thermomechanically Coupled Finite Deformation Constitutive Model for Shape Memory Alloys Based on Hencky Strain
,”
Int. J. Eng. Sci.
,
117
, pp.
51
77
.
27.
Xu
,
L.
,
Baxevanis
,
T.
, and
Lagoudas
,
D. C.
,
2019
, “
A Three-Dimensional Constitutive Model for the Martensitic Transformation in Polycrystalline Shape Memory Alloys Under Large Deformation
,”
Smart Mater. Struct.
,
28
(
7
), p.
074004
.
28.
Reinhardt
,
W.
, and
Dubey
,
R.
,
1995
, “
Eulerian Strain-Rate as a Rate of Logarithmic Strain
,”
Mech. Res. Commun.
,
22
(
2
), pp.
165
170
.
29.
Xiao
,
H.
,
Bruhns
,
O.
, and
Meyers
,
A.
,
1997
, “
Logarithmic Strain, Logarithmic Spin and Logarithmic Rate
,”
Acta Mech.
,
124
(
1–4
), pp.
89
105
.
30.
Xiao
,
H.
,
Bruhns
,
O.
, and
Meyers
,
A.
,
2004
, “
Explicit Dual Stress-Strain and Strain-Stress Relations of Incompressible Isotropic Hyperelastic Solids Via Deviatoric Hencky Strain and Cauchy Stress
,”
Acta Mech.
,
168
(
1–2
), pp.
21
33
.
31.
Darijani
,
H.
, and
Naghdabadi
,
R.
,
2010
, “
Hyperelastic Materials Behavior Modeling Using Consistent Strain Energy Density Functions
,”
Acta Mech.
,
213
(
3–4
), pp.
235
254
.
32.
Sittner
,
P.
,
Takakura
,
M.
, and
Tokuda
,
M.
,
1995
, “
The Stabilization of Transformation Pathway in Stress Induced Martensite
,”
Scr. Metall. Mater.
,
32
(
12
), pp.
2073
2079
.
33.
Lim
,
J. T.
, and
McDowell
,
D. L.
,
1999
, “
Mechanical Behavior of a Ni-Ti Shape Memory Alloy Under Axial-Torsional Proportional and Nonproportional Loading
,”
ASME J. Eng. Mater. Technol.
,
121
(1), pp.
9
18
.
34.
Helm
,
D.
, and
Haupt
,
P.
,
2001
, “
Thermomechanical Behavior of Shape Memory Alloys
,”
SPIE's 8th Annual International Symposium on Smart Structures and Materials
,
Newport Beach, CA
, pp.
302
313
.
35.
Helm
,
D.
, and
Haupt
,
P.
,
2003
, “
Shape Memory Behaviour: Modelling Within Continuum Thermomechanics
,”
Int. J. Solids Struct.
,
40
(
4
), pp.
827
849
.
36.
Grabe
,
C.
, and
Bruhns
,
O.
,
2009
, “
Path Dependence and Multiaxial Behavior of a Polycrystalline NiTi Alloy Within the Pseudoelastic and Pseudoplastic Temperature Regimes
,”
Int. J. Plast.
,
25
(
3
), pp.
513
545
.
37.
Popov
,
P.
, and
Lagoudas
,
D. C.
,
2007
, “
A 3-D Constitutive Model for Shape Memory Alloys Incorporating Pseudoelasticity and Detwinning of Self-Accommodated Martensite
,”
Int. J. Plast.
,
23
(
10–11
), pp.
1679
1720
.
38.
Zaki
,
W.
, and
Moumni
,
Z.
,
2007
, “
A Three-Dimensional Model of the Thermomechanical Behavior of Shape Memory Alloys
,”
J. Mech. Phys. Solids
,
55
(
11
), pp.
2455
2490
.
39.
Morin
,
C.
,
Moumni
,
Z.
, and
Zaki
,
W.
,
2011
, “
A Constitutive Model for Shape Memory Alloys Accounting for Thermomechanical Coupling
,”
Int. J. Plast.
,
27
(
5
), pp.
748
767
.
40.
Wang
,
L.
,
Feng
,
P.
,
Wu
,
Y.
, and
Liu
,
Z.
,
2019
, “
A Tensile–Compressive Asymmetry Model for Shape Memory Alloys With a Redefined Martensite Internal Variable
,”
Smart Mater. Struct.
,
28
(
10
), p.
105050
.
41.
Arghavani
,
J.
,
Auricchio
,
F.
,
Naghdabadi
,
R.
,
Reali
,
A.
, and
Sohrabpour
,
S.
,
2010
, “
A 3-D Phenomenological Constitutive Model for Shape Memory Alloys Under Multiaxial Loadings
,”
Int. J. Plast.
,
26
(
7
), pp.
976
991
.
42.
Chemisky
,
Y.
,
Duval
,
A.
,
Patoor
,
E.
, and
Zineb
,
T. B.
,
2011
, “
Constitutive Model for Shape Memory Alloys Including Phase Transformation, Martensitic Reorientation and Twins Accommodation
,”
Mech. Mater.
,
43
(
7
), pp.
361
376
.
43.
Zaki
,
W.
,
2012
, “
An Efficient Implementation for a Model of Martensite Reorientation in Martensitic Shape Memory Alloys Under Multiaxial Nonproportional Loading
,”
Int. J. Plast.
,
37
, pp.
72
94
.
44.
Sedlak
,
P.
,
Frost
,
M.
,
Benešová
,
B.
,
Zineb
,
T. B.
, and
Šittner
,
P.
,
2012
, “
Thermomechanical Model for Niti-Based Shape Memory Alloys Including R-Phase and Material Anisotropy Under Multi-Axial Loadings
,”
Int. J. Plast.
,
39
, pp.
132
151
.
45.
Auricchio
,
F.
,
Bonetti
,
E.
,
Scalet
,
G.
, and
Ubertini
,
F.
,
2014
, “
Theoretical and Numerical Modeling of Shape Memory Alloys Accounting for Multiple Phase Transformations and Martensite Reorientation
,”
Int. J. Plast.
,
59
, pp.
30
54
.
46.
Yu
,
C.
,
Kang
,
G.
,
Song
,
D.
, and
Kan
,
Q.
,
2015
, “
Effect of Martensite Reorientation and Reorientation-Induced Plasticity on Multiaxial Transformation Ratchetting of Super-Elastic NiTi Shape Memory Alloy: New Consideration in Constitutive Model
,”
Int. J. Plast.
,
67
, pp.
69
101
.
47.
Jiang
,
D.
,
Kyriakides
,
S.
,
Bechle
,
N. J.
, and
Landis
,
C. M.
,
2017
, “
Bending of Pseudoelastic NiTi Tubes
,”
Int. J. Solids Struct.
,
124
, pp.
192
214
.
48.
Chumljakov
,
J.
, and
Starenchenko
,
S.
,
1995
, “
Stress Induced Martensitic Transformation in Aged Titanium Nickel Single Crystals
,”
J. Phys. IV
,
5
(
C8
), p.
C8–803
.
49.
Patoor
,
E.
,
El Amrani
,
M.
,
Eberhardt
,
A.
, and
Berveiller
,
M.
,
1995
, “
Determination of the Origin for the Dissymmetry Observed Between Tensile and Compression Tests on Shape Memory Alloys
,”
J. Phys. IV
,
5
(
C2
), p.
C2–495
.
50.
Jacobus
,
K.
,
Sehitoglu
,
H.
, and
Balzer
,
M.
,
1996
, “
Effect of Stress State on the Stress-Induced Martensitic Transformation in Polycrystalline Ni-Ti Alloy
,”
Metall. Mater. Trans. A
,
27
(
10
), pp.
3066
3073
.
51.
Gall
,
K.
, and
Shehitoglu
,
H.
,
1999
, “
The Role of Texture in Tension-Compression Asymmetry in Polycrstyalline NiTi
,”
Int. J. Plast.
,
15
, pp.
69
92
.
52.
Gall
,
K.
,
Juntunen
,
K.
,
Maier
,
H.
,
Sehitoglu
,
H.
, and
Chumlyakov
,
Y. I.
,
2001
, “
Instrumented Micro-Indentation of NiTi Shape-Memory Alloys
,”
Acta Mater.
,
49
(
16
), pp.
3205
3217
.
53.
Lim
,
T.
, and
McDowell
,
D.
,
2002
, “
Cyclic Thermomechanical Behavior of a Polycrystalline Pseudoelastic Shape Memory Alloy
,”
J. Mech. Phys. Solids
,
50
(
3
), pp.
651
676
.
54.
Auricchio
,
F.
, and
Petrini
,
L.
,
2004
, “
A Three-Dimensional Model Describing Stress-Temperature Induced Solid Phase Transformations: Solution Algorithm and Boundary Value Problems
,”
Int. J. Numer. Methods Eng.
,
61
(
6
), pp.
807
836
.
55.
Evangelista
,
V.
,
Marfia
,
S.
, and
Sacco
,
E.
,
2009
, “
Phenomenological 3D and 1D Consistent Models for Shape-Memory Alloy Materials
,”
Comput. Mech.
,
44
(
3
), p.
405
.
56.
Zaki
,
W.
,
Moumni
,
Z.
, and
Morin
,
C.
,
2011
, “
Modeling Tensile-Compressive Asymmetry for Superelastic Shape Memory Alloys
,”
Mech. Adv. Mater. Struct.
,
18
(
7
), pp.
559
564
.
57.
Matsuzaki
,
Y.
,
Funami
,
K.
, and
Naito
,
H.
,
2002
, “
Inner Loops of Pseudoelastic Hysteresis of Shape Memory Alloys: Preisach Approach
,”
SPIE's 9th Annual International Symposium on Smart Structures and Materials
,
San Diego, CA
, Vol.
4699
,
International Society for Optics and Photonics
, pp.
355
364
.
58.
Rao
,
A.
,
Ruimi
,
A.
, and
Srinivasa
,
A. R.
,
2014
, “
Internal Loops in Superelastic Shape Memory Alloy Wires Under Torsion—Experiments and Simulations/Predictions
,”
Int. J. Solids Struct.
,
51
(
25–26
), pp.
4554
4571
.
59.
Dutta
,
S. M.
, and
Ghorbel
,
F. H.
,
2005
, “
Differential Hysteresis Modeling of a Shape Memory Alloy Wire Actuator
,”
IEEE/ASME Trans. Mechatron.
,
10
(
2
), pp.
189
197
.
60.
Feng
,
Y.
,
Rabbath
,
C. A.
, and
Su
,
C.-Y.
,
2011
, “
Inverse Duhem Model Based Robust Adaptive Control for Flap Positioning System With SMA Actuators
,”
IFAC Proc. Vols.
,
44
(
1
), pp.
8126
8131
.
61.
Mayergoyz
,
I. D.
,
2012
,
Mathematical Models of Hysteresis
,
Springer Science & Business Media
,
New York
.
62.
Bo
,
Z.
, and
Lagoudas
,
D. C.
,
1999
, “
Thermomechanical Modeling of Polycrystalline SMAs Under Cyclic Loading, Part IV: Modeling of Minor Hysteresis Loops
,”
Int. J. Eng. Sci.
,
37
(
9
), pp.
1205
1249
.
63.
Sun
,
L.
,
Huang
,
W.
, and
Cheah
,
J.
,
2010
, “
The Temperature Memory Effect and the Influence of Thermo-Mechanical Cycling in Shape Memory Alloys
,”
Smart Mater. Struct.
,
19
(
5
), p.
055005
.
64.
Junker
,
P.
,
Jaeger
,
S.
,
Kastner
,
O.
,
Eggeler
,
G.
, and
Hackl
,
K.
,
2015
, “
Variational Prediction of the Mechanical Behavior of Shape Memory Alloys Based on Thermal Experiments
,”
J. Mech. Phys. Solids
,
80
, pp.
86
102
.
65.
Lobo
,
P. S.
,
Almeida
,
J.
, and
Guerreiro
,
L.
,
2017
, “
Recentring and Control of Peak Displacements of a RC Frame Using Damping Devices
,”
Soil Dyn. Earthquake Eng.
,
94
, pp.
66
74
.
66.
Karakalas
,
A.
,
Machairas
,
T.
,
Solomou
,
A.
, and
Saravanos
,
D. A.
,
2019
, “
Modeling of Partial Transformation Cycles of SMAs With a Modified Hardening Function
,”
Smart Mater. Struct.
,
28
(
3
), p.
035014
.
67.
Prahlad
,
H.
, and
Chopra
,
I.
,
2003
, “
Development of a Strain-Rate Dependent Model for Uniaxial Loading of SMA Wires
,”
J. Intell. Mater. Syst. Struct.
,
14
(
14
), pp.
429
442
.
68.
Shaw
,
J.
, and
Kyriakides
,
S.
,
1995
, “
Thermomechanical Aspects of NiTi
,”
J. Mech. Phys. Solids
,
43
(
8
), pp.
1243
1281
.
69.
He
,
Y.
, and
Sun
,
Q.
,
2010
, “
Rate-Dependent Domain Spacing in a Stretched NiTi Strip
,”
Int. J. Solids Struct.
,
47
(
20
), pp.
2775
2783
.
70.
He
,
Y.
,
Yin
,
H.
,
Zhou
,
R.
, and
Sun
,
Q.
,
2010
, “
Ambient Effect on Damping Peak of NiTi Shape Memory Alloy
,”
Mater. Lett.
,
64
(
13
), pp.
1483
1486
.
71.
He
,
Y.
, and
Sun
,
Q.
,
2011
, “
On Non-Monotonic Rate Dependence of Stress Hysteresis of Superelastic Shape Memory Alloy Bars
,”
Int. J. Solids Struct.
,
48
(
11–12
), pp.
1688
1695
.
72.
Yan
,
Y.
,
Yin
,
H.
,
Sun
,
Q.
, and
Huo
,
Y.
,
2012
, “
Rate Dependence of Temperature Fields and Energy Dissipations in Non-Static Pseudoelasticity
,”
Continuum Mech. Thermodyn.
,
24
(
4–6
), pp.
675
695
.
73.
Yin
,
H.
,
Yan
,
Y.
,
Huo
,
Y.
, and
Sun
,
Q.
,
2013
, “
Rate Dependent Damping of Single Crystal CuAlNi Shape Memory Alloy
,”
Mater. Lett.
,
109
, pp.
287
290
.
74.
Auricchio
,
F.
, and
Sacco
,
E.
,
2001
, “
Thermo-Mechanical Modelling of a Superelastic Shape-Memory Wire Under Cyclic Stretching–Bending Loadings
,”
Int. J. Solids Struct.
,
38
(
34–35
), pp.
6123
6145
.
75.
Zhu
,
S.
, and
Zhang
,
Y.
,
2007
, “
A Thermomechanical Constitutive Model for Superelastic Sma Wire With Strain-Rate Dependence
,”
Smart Mater. Struct.
,
16
(
5
), p.
1696
.
76.
Morin
,
C.
,
Moumni
,
Z.
, and
Zaki
,
W.
,
2011
, “
Thermomechanical Coupling in Shape Memory Alloys Under Cyclic Loadings: Experimental Analysis and Constitutive Modeling
,”
Int. J. Plast.
,
27
(
12
), pp.
1959
1980
.
77.
Yin
,
H.
,
He
,
Y.
, and
Sun
,
Q.
,
2014
, “
Effect of Deformation Frequency on Temperature and Stress Oscillations in Cyclic Phase Transition of NiTi Shape Memory Alloy
,”
J. Mech. Phys. Solids
,
67
, pp.
100
128
.
78.
Yu
,
C.
,
Kang
,
G.
,
Kan
,
Q.
, and
Zhu
,
Y.
,
2015
, “
Rate-Dependent Cyclic Deformation of Super-Elastic NiTi Shape Memory Alloy: Thermo-Mechanical Coupled and Physical Mechanism-Based Constitutive Model
,”
Int. J. Plast.
,
72
, pp.
60
90
.
79.
Yu
,
C.
,
Kang
,
G.
, and
Kan
,
Q.
,
2018
, “
A Micromechanical Constitutive Model for Grain Size Dependent Thermo-Mechanically Coupled Inelastic Deformation of Super-Elastic NiTi Shape Memory Alloy
,”
Int. J. Plast.
,
105
, pp.
99
127
.
80.
Monroe
,
J.
,
Gehring
,
D.
,
Karaman
,
I.
,
Arroyave
,
R.
,
Brown
,
D.
, and
Clausen
,
B.
,
2016
, “
Tailored Thermal Expansion Alloys
,”
Acta Mater.
,
102
, pp.
333
341
.
81.
Ahadi
,
A.
,
Matsushita
,
Y.
,
Sawaguchi
,
T.
,
Sun
,
Q.
, and
Tsuchiya
,
K.
,
2017
, “
Origin of Zero and Negative Thermal Expansion in Severely-Deformed Superelastic Niti Alloy
,”
Acta Mater.
,
124
, pp.
79
92
.
82.
Gehring
,
D.
,
Monroe
,
J. A.
, and
Karaman
,
I.
,
2020
, “
Effects of Composition on the Mechanical Properties and Negative Thermal Expansion in Martensitic Tinb Alloys
,”
Scr. Mater.
,
178
, pp.
351
355
.
83.
Zhang
,
M.
, and
Baxevanis
,
T.
, “
Tailoring the Anisotropic Thermal Expansion in Shape Memory Alloys Through Phase Transformation and Martensite (Re)orientation
” (submitted).
84.
Coleman
,
B.
, and
Gurtin
,
M.
,
1967
, “
Thermodynamics with Internal State Variables
,”
J. Chem. Phys.
,
47
(
2
), pp.
597
613
.
85.
Raniecki
,
B.
, and
Mróz
,
Z.
,
2008
, “
Yield or Martensitic Phase Transformation Conditions and Dissipation Functions for Isotropic, Pressure-Insensitive Alloys Exhibiting SD Effect
,”
Acta Mech.
,
195
(
1–4
), pp.
81
102
.
86.
Lagoudas
,
D.
, and
Bo
,
Z.
,
1999
, “
Thermomechanical Modeling of Polycrystalline SMAs Under Cyclic Loading, Part II: Material Characterization and Experimental Results for a Stable Transformation Cycle
,”
Int. J. Eng. Sci.
,
37
(
9
), pp.
1141
1173
.
87.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
1996
, “
Logarithmic Strain, Logarithmic Spin and Logarithmic Rate
,”
Acta Mech.
,
124
, pp.
89
105
.
88.
Simo
,
J.
, and
Hughes
,
T.
,
1998
,
Computational Inelasticity
,
Springer-Verlag, Inc.
,
New York
.
89.
Xiao
,
H.
,
Bruhns
,
O.
, and
Meyers
,
A.
,
2000
, “
A Consistent Finite Elastoplasticity Theory Combining Additive and Multiplicative Decomposition of the Stretching and the Deformation Gradient
,”
Int. J. Plast.
,
16
(
2
), pp.
143
177
.
90.
Bruhns
,
O.
,
Xiao
,
H.
, and
Meyers
,
A.
,
2003
, “
Some Basic Issues in Traditional Eulerian Formulations of Finite Elastoplasticity
,”
Int. J. Plast.
,
19
(
11
), pp.
2007
2026
.
91.
Hartl
,
D.
,
Mooney
,
J.
,
Lagoudas
,
D.
,
Calkins
,
F.
, and
Mabe
,
J.
,
2009
, “
Use of a Ni60Ti Shape Memory Alloy for Active Jet Engine Chevron Application: II. Experimentally Validated Numerical Analysis
,”
Smart Mater. Struct.
,
19
(
1
), p.
015021
.
92.
Malvern
,
L. E.
,
1969
,
Introduction to the Mechanics of a Continuous Medium
(
Series in Engineering of the Physical Sciences
),
Prentice-Hall, Inc.
,
Upper Saddle River, NJ
.
You do not currently have access to this content.