Abstract

Soft materials, such as rubber and gels, exhibit rate-dependent response where the stiffness, strength, and fracture patterns depend largely on loading rates. Thus, accurate modeling of the mechanical behavior requires accounting for different sources of rate dependence such as the intrinsic viscoelastic behavior of the polymer chains and the dynamic bond breakage and formation mechanism. In this chapter, we extend the QC approach presented in Ghareeb and Elbanna (2020, An Adaptive Quasi-Continuum Approach for Modeling Fracture in Networked Materials: Application to Modeling of Polymer Networks, J. Mech. Phys. Solids, 137, p. 103819) to include rate-dependent behavior of polymer networks. We propose a homogenization rule for the viscous forces in the polymer chains and update the adaptive mesh refinement algorithm to account for dynamic bond breakage. Then, we use nonlinear finite element framework with predictor–corrector scheme to solve for the nodal displacements and velocities. We demonstrate the accuracy of the method by verifying it against fully discrete simulations for different examples of network structures and loading conditions. We further use the method to investigate the effects of the loading rates on the fracture characteristics of networks with different rate-dependent parameters. Finally, We discuss the implications of the extended method for multiscale analysis of fracture in rate-dependent polymer networks.

References

1.
Creton
,
C.
, and
Ciccotti
,
M.
,
2016
, “
Fracture and Adhesion of Soft Materials: A Review
,”
Rep. Prog. Phys.
,
79
(
4
), p.
046601
.
2.
Everaers
,
R.
, and
Kremer
,
K.
,
2009
, “
Topology Effects in Model Polymer Networks
,”
AIP. Conf. Proc.
,
469
(
1
), pp.
615
626
.
3.
Kothari
,
K.
,
Hu
,
Y.
,
Gupta
,
S.
, and
Elbanna
,
A.
,
2018
, “
Mechanical Response of Two-Dimensional Polymer Networks: Role of Topology, Rate Dependence, and Damage Accumulation
,”
ASME J. Appl. Mech.
,
85
(
3
), p.
031008
.
4.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber. Chem. Technol.
,
69
(
1
), pp.
59
61
.
5.
Rivlin
,
R. S.
,
1948
, “
Large Elastic Deformations of Isotropic Materials. IV. Further Developments of the General Theory
,”
Phil. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
241
(
835
), pp.
379
397
.
6.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids.
,
41
(
2
), pp.
389
412
.
7.
Hu
,
Y.
,
Zhao
,
X.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2010
, “
Using Indentation to Characterize the Poroelasticity of Gels
,”
Appl. Phys. Lett.
,
96
(
12
), pp.
8
11
.
8.
Chester
,
S. A.
, and
Anand
,
L.
,
2011
, “
A Thermo-Mechanically Coupled Theory for Fluid Permeation in Elastomeric Materials: Application to Thermally Responsive Gels
,”
J. Mech. Phys. Solids.
,
59
(
10
), pp.
1978
2006
.
9.
Babuška
,
I.
,
Banerjee
,
U.
, and
Osborn
,
J. E.
,
2004
, “
Generalized Finite Element Methods: Main Ideas, Results and Perspective
,”
Int. J. Comput. Methods
,
1
(
1
), pp.
67
103
.
10.
Buehler
,
M. J.
,
2008
,
Atomistic Modeling of Materials Failure
,
Springer US
,
Boston, MA
.
11.
Broedersz
,
C. P.
, and
Mackintosh
,
F. C.
,
2014
, “
Modeling Semiflexible Polymer Networks
,”
Rev. Mod. Phys.
,
86
(
3
), pp.
995
1036
.
12.
Tadmor
,
E. B.
,
Ortiz
,
M.
, and
Phillips
,
R.
,
1996
, “
Quasicontinuum Analysis of Defects in Solids
,”
Phil. Mag. A: Phys. Condens. Matter, Struct., Defects and Mech. Properties
,
73
(
6
), pp.
1529
1563
.
13.
Miller
,
R. E.
, and
Tadmor
,
E. B.
,
2002
, “
The Quasicontinuum Method: Overview, Applications and Current Directions
,”
J. Comput. Aided Mater. Des.
,
9
(
3
), pp.
203
239
.
14.
Shenoy
,
V. B.
,
Miller
,
R.
,
Tadmor
,
E. B.
,
Rodney
,
D.
,
Phillips
,
R.
, and
Ortiz
,
M.
,
1999
, “
An Adaptive Finite Element Approach to Atomic-Scale Mechanics—The Quasicontinuum Method
,”
J. Mech. Phys. Solids.
,
47
(
3
), pp.
611
642
.
15.
Ghareeb
,
A.
, and
Elbanna
,
A.
,
2019
, “
An Adaptive Quasi-Continuum Approach for Modeling Fracture in Networked Materials: Application to Modeling of Polymer Networks
,”
J. Mech. Phys. Solids
,
137
), p.
103819
.
16.
Li
,
J.
,
Hu
,
Y.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2012
, “
Experimental Determination of Equations of State for Ideal Elastomeric Gels
,”
Soft Matter
,
8
(
31
), pp.
8121
8128
.
17.
Nguyen
,
T. D.
,
Yakacki
,
C. M.
,
Brahmbhatt
,
P. D.
, and
Chambers
,
M. L.
,
2010
, “
Modeling the Relaxation Mechanisms of Amorphous Shape Memory Polymers
,”
Adv. Mater.
,
22
(
31
), pp.
3411
3423
.
18.
Kumar
,
A.
, and
Lopez-Pamies
,
O.
,
2016
, “
On the Two-Potential Constitutive Modeling of Rubber Viscoelastic Materials
,”
Comptes Rendus – Mecanique
,
344
(
2
), pp.
102
112
.
19.
Zhang
,
J.
, and
Ostoja-Starzewski
,
M.
,
2015
, “
Mesoscale Bounds in Viscoelasticity of Random Composites
,”
Mech. Res. Commun.
,
68
, pp.
98
104
.
20.
Zhou
,
J.
,
Jiang
,
L.
, and
Khayat
,
R. E.
,
2018
, “
A Micro-Macro Constitutive Model for Finite-Deformation Viscoelasticity of Elastomers With Nonlinear Viscosity
,”
J. Mech. Phys. Solids.
,
110
, pp.
137
154
.
21.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids.
,
11
(
5
), pp.
357
372
.
22.
Suquet
,
P. M.
,
1985
, “Local and Global Aspects in the Mathematical Theory of Plasticity,”
Plasticity Today: Modelling, Methods and Applications
,
Elsevier Applied Science Publishers
,
Udine, Italy
, pp.
279
310
.
23.
Ghareeb
,
A.
, and
Elbanna
,
A.
,
2020
, “
An Adaptive Quasicontinuum Approach for Modeling Fracture in Networked Materials: Application to Modeling of Polymer Networks
,”
J. Mech. Phys. Solids.
,
137
, p.
103819
.
24.
Marko
,
J. F.
, and
Siggia
,
E. D.
,
1995
, “
Stretching DNA
,”
Macromolecules
,
28
(
26
), pp.
8759
8770
.
25.
Marko
,
J. F.
,
1998
, “
DNA Under High Tension: Overstretching, Undertwisting, and Relaxation Dynamics
,”
Phys. Rev. E – Stat. Phys., Plasmas, Fluids, Related Interdisciplinary Topics
,
57
(
2
), pp.
2134
2149
.
26.
Lieou
,
C. K.
,
Elbanna
,
A. E.
, and
Carlson
,
J. M.
,
2013
, “
Sacrificial Bonds and Hidden Length in Biomaterials: A Kinetic Constitutive Description of Strength and Toughness in Bone
,”
Phys. Rev. E – Stat., Nonlinear, Soft Matter Phys.
,
88
(
1
), p.
12703
.
27.
Bell
,
G. I.
,
1978
, “
Models for the Specific Adhesion of Cells to Cells
,”
Science
,
200
(
4342
), pp.
618
627
.
28.
Smith
,
B. L.
,
Schäffer
,
T. E.
,
Viani
,
M.
,
Thompson
,
J. B.
,
Frederick
,
N. A.
,
Kindt
,
J.
,
Belcher
,
A.
,
Stucky
,
G. D.
,
Morse
,
D. E.
, and
Hansma
,
P. K.
,
1999
, “
Molecular Mechanistic Origin of the Toughness of Natural Adhesives, Fibres and Composites
,”
Nature
,
399
(
6738
), pp.
761
763
.
29.
Fantner
,
G. E.
,
Oroudjev
,
E.
,
Schitter
,
G.
,
Golde
,
L. S.
,
Thurner
,
P.
,
Finch
,
M. M.
,
Turner
,
P.
,
Gutsmann
,
T.
,
Morse
,
D. E.
,
Hansma
,
H.
, and
Hansma
,
P. K.
,
2006
, “
Sacrificial Bonds and Hidden Length: Unraveling Molecular Mesostructures in Tough Materials
,”
Biophys. J.
,
90
(
4
), pp.
1411
1418
.
30.
Beex
,
L. A.
,
Peerlings
,
R. H.
, and
Geers
,
M. G.
,
2014
, “
A Multiscale Quasicontinuum Method for Dissipative Lattice Models and Discrete Networks
,”
J. Mech. Phys. Solids.
,
64
(
1
), pp.
154
169
.
31.
Rokoš
,
O.
,
Peerlings
,
R. H.
,
Zeman
,
J.
, and
Beex
,
L. A.
,
2017
, “
An Adaptive Variational Quasicontinuum Methodology for Lattice Networks With Localized Damage
,”
Int. J. Numer. Methods Eng.
,
112
(
2
), pp.
174
200
.
32.
Mikeš
,
K.
, and
Jirásek
,
M.
,
2017
, “
Quasicontinuum Method Extended to Irregular Lattices
,”
Comput. Struct.
,
192
, pp.
50
70
.
33.
Rivara
,
M.-C. C.
,
1997
, “
New Longest-Edge Algorithms for the Refinement and/or Improvement of Unstructured Triangulations
,”
Int. J. Numer. Methods Eng.
,
40
(
18
), pp.
3313
3324
.
34.
Liu
,
M.
,
Guo
,
J.
,
Li
,
Z.
,
Hui
,
C. Y.
, and
Zehnder
,
A. T.
,
2019
, “
Crack Propagation in a PVA Dual-Crosslink Hydrogel: Crack Tip Fields Measured Using Digital Image Correlation
,”
Mech. Mater.
,
138
, p.
103158
.
35.
Arora
,
S.
,
Shabbir
,
A.
,
Hassager
,
O.
,
Ligoure
,
C.
, and
Ramos
,
L.
,
2017
, “
Brittle Fracture of Polymer Transient Networks
,”
J. Rheol.
,
61
(
6
), pp.
1267
1275
.
36.
Mao
,
Y.
, and
Anand
,
L.
,
2018
, “
Fracture of Elastomeric Materials by Crosslink Failure
,”
ASME J. Appl. Mech.
,
85
(
8
), p.
081008
.
37.
Elbanna
,
A. E.
, and
Carlson
,
J. M.
,
2013
, “
Dynamics of Polymer Molecules With Sacrificial Bond and Hidden Length Systems: Towards a Physically-Based Mesoscopic Constitutive Law
,”
PLoS. One.
,
8
(
4
), pp.
1
10
.
38.
Fantner
,
G. E.
,
Hassenkam
,
T.
,
Kindt
,
J. H.
,
Weaver
,
J. C.
,
Birkedal
,
H.
,
Pechenik
,
L.
,
Cutroni
,
J. A.
,
Cidade
,
G. A.
,
Stucky
,
G. D.
,
Morse
,
D. E.
, and
Hansma
,
P. K.
,
2005
, “
Sacrificial Bonds and Hidden Length Dissipate Energy as Mineralized Fibrils Separate During Bone Fracture
,”
Nat. Mater.
,
4
(
8
), pp.
612
616
.
39.
Hui
,
C. Y.
, and
Long
,
R.
,
2012
, “
A Constitutive Model for the Large Deformation of a Self-Healing Gel
,”
Soft. Matter.
,
8
(
31
), pp.
8209
8216
.
40.
Zhang
,
T.
,
Lin
,
S.
,
Yuk
,
H.
, and
Zhao
,
X.
,
2015
, “
Predicting Fracture Energies and Crack-Tip Fields of Soft Tough Materials
,”
Extrem. Mech. Lett.
,
4
, pp.
1
8
.
41.
Zhang
,
R.
,
Zhang
,
C.
,
Yang
,
Z.
,
Wu
,
Q.
,
Sun
,
P.
, and
Wang
,
X.
,
2020
, “
Hierarchical Dynamics in a Transient Polymer Network Cross-Linked by Orthogonal Dynamic Bonds
,”
Macromolecules
,
53
(
14
), pp.
5937
5949
.
42.
Bai
,
R.
,
Yang
,
J.
, and
Suo
,
Z.
,
2019
, “
Fatigue of Hydrogels
,”
Eur. J. Mech., A/Solids
,
74
, pp.
337
370
.
43.
Bai
,
R.
,
Yang
,
Q.
,
Tang
,
J.
,
Morelle
,
X. P.
,
Vlassak
,
J.
, and
Suo
,
Z.
,
2017
, “
Fatigue Fracture of Tough Hydrogels
,”
Extrem. Mech. Lett.
,
15
, pp.
91
96
.
44.
Sakai
,
T.
,
Matsunaga
,
T.
,
Yamamoto
,
Y.
,
Ito
,
C.
,
Yoshida
,
R.
,
Suzuki
,
S.
,
Sasaki
,
N.
,
Shibayama
,
M.
, and
Chung
,
U. I.
,
2008
, “
Design and Fabrication of a High-Strength Hydrogel With Ideally Homogeneous Network Structure From Tetrahedron-Like Macromonomers
,”
Macromolecules
,
41
(
14
), pp.
5379
5384
.
45.
Sakai
,
T.
,
Akagi
,
Y.
,
Matsunaga
,
T.
,
Kurakazu
,
M.
,
Chung
,
U. I.
, and
Shibayama
,
M.
,
2010
, “
Highly Elastic and Deformable Hydrogel Formed From Tetra-Arm Polymers
,”
Macromol. Rapid. Commun.
,
31
(
22
), pp.
1954
1959
.
46.
Geers
,
M. G. D.
,
Kouznetsova
,
V. G.
,
Matouš
,
K.
, and
Yvonnet
,
J.
,
2017
, “
Homogenization Methods and Multiscale Modeling: Nonlinear Problems
,”
Encyclopedia of Computational Mechanics Second Edition
,
John Wiley & Sons, Ltd
,
Chichester, UK
, pp.
1
34
.
You do not currently have access to this content.