Abstract

Dielectric elastomer (DE) possesses attributes such as large deformation and fast response. As a typical DE actuating structure, the multilayered DE bending actuator (MDEBA) is lightweight and can actuate in relatively low voltage without a rigid frame and pre-stretch. These attributes arouse wide research interest in the MDEBA on the application of soft robots. However, due to its large deformation and nonlinear electromechanical dynamics, the control of MDEBA remains highly challenged. Considering the large bending deformation and gravity effect, we develop an electromechanical dynamic model-based control strategy, which can adaptively compensate for the parameter uncertainties during the actuation of MDEBA. Experimental results validate that this control strategy provides highly enhanced control performance compared to the proportional integral derivative (PID) controller. The electromechanical modeling method and dynamic control strategy may guide the further study of MDEBA, soft robots, and flexible devices.

References

1.
Shankar
,
R.
,
Ghosh
,
T. K.
, and
Spontak
,
R. J.
,
2007
, “
Dielectric Elastomers as Next-Generation Polymeric Actuators
,”
Soft Matter
,
3
(
9
), p.
1116
.
2.
Anderson
,
I. A.
,
Gisby
,
T. A.
,
McKay
,
T. G.
,
O’Brien
,
B. M.
, and
Calius
,
E. P.
,
2012
, “
Multi-Functional Dielectric Elastomer Artificial Muscles for Soft and Smart Machines
,”
J. Appl. Phys.
,
112
(
4
), p.
041101
.
3.
Lu
,
T.
,
Ma
,
C.
, and
Wang
,
T.
,
2020
, “
Mechanics of Dielectric Elastomer Structures: A Review
,”
Extrem. Mech. Lett.
,
38
(
1
), p.
100752
.
4.
Koh
,
S. J. A.
,
Keplinger
,
C.
,
Kaltseis
,
R.
,
Foo
,
C.-C.
,
Baumgartner
,
R.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2017
, “
High-Performance Electromechanical Transduction Using Laterally-Constrained Dielectric Elastomers Part I: Actuation Processes
,”
J. Mech. Phys. Solids
,
105
(
1
), pp.
81
94
.
5.
Kollosche
,
M.
,
Zhu
,
J.
,
Suo
,
Z.
, and
Kofod
,
G.
,
2012
, “
Complex Interplay of Nonlinear Processes in Dielectric Elastomers
,”
Phys. Rev. E
,
85
(
5
), p.
051801
.
6.
Bigue
,
J.-P. L.
, and
Plante
,
J.-S.
,
2013
, “
Experimental Study of Dielectric Elastomer Actuator Energy Conversion Efficiency
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
169
177
.
7.
Nguyen
,
C. T.
,
Phung
,
H.
,
Nguyen
,
T. D.
,
Jung
,
H.
, and
Choi
,
H. R.
,
2017
, “
Multiple-Degrees-of-Freedom Dielectric Elastomer Actuators for Soft Printable Hexapod Robot
,”
Sens. Actuators, A
,
267
(
1
), pp.
505
516
.
8.
Keplinger
,
C.
,
Li
,
T.
,
Baumgartner
,
R.
,
Suo
,
Z.
, and
Bauer
,
S.
,
2012
, “
Harnessing Snap-Through Instability in Soft Dielectrics to Achieve Giant Voltage-Triggered Deformation
,”
Soft Matter
,
8
(
2
), pp.
285
288
.
9.
Lu
,
T.
,
An
,
L.
,
Li
,
J.
,
Yuan
,
C.
, and
Wang
,
T. J.
,
2015
, “
Electro-Mechanical Coupling Bifurcation and Bulging Propagation in a Cylindrical Dielectric Elastomer Tube
,”
J. Mech. Phys. Solids
,
85
(
1
), pp.
160
175
.
10.
Shian
,
S.
,
Bertoldi
,
K.
, and
Clarke
,
D. R.
,
2015
, “
Dielectric Elastomer Based ‘Grippers’ for Soft Robotics
,”
Adv. Mater.
,
27
(
43
), pp.
6814
6819
.
11.
Shintake
,
J.
,
Rosset
,
S.
,
Schubert
,
B.
,
Floreano
,
D.
, and
Shea
,
H.
,
2016
, “
Versatile Soft Grippers With Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators
,”
Adv. Mater.
,
28
(
2
), pp.
231
238
.
12.
Maleki
,
T.
,
Chitnis
,
G.
, and
Ziaie
,
B.
,
2011
, “
A Batch-Fabricated Laser-Micromachined PDMS Actuator With Stamped Carbon Grease Electrodes
,”
J. Micromech. Microeng.
,
21
(
2
), p.
027002
.
13.
Imamura
,
H.
,
Kadooka
,
K.
, and
Taya
,
M.
,
2017
, “
A Variable Stiffness Dielectric Elastomer Actuator Based on Electrostatic Chucking
,”
Soft Matter
,
13
(
18
), pp.
3440
3448
.
14.
Duduta
,
M.
,
Wood
,
R. J.
, and
Clarke
,
D. R.
,
2016
, “
Multilayer Dielectric Elastomers for Fast, Programmable Actuation Without Prestretch
,”
Adv. Mater.
,
28
(
36
), pp.
8058
8063
.
15.
Gerratt
,
A. P.
,
Balakrisnan
,
B.
,
Penskiy
,
I.
, and
Bergbreiter
,
S.
,
2014
, “
Dielectric Elastomer Actuators Fabricated Using a Micro-Molding Process
,”
Smart Mater. Struct.
,
23
(
5
), p.
055004
.
16.
Lau
,
G.-K.
,
Goh
,
S. C.-K.
, and
Shiau
,
L.-L.
,
2011
, “
Dielectric Elastomer Unimorph Using Flexible Electrodes of Electrolessly Deposited (ELD) Silver
,”
Sens. Actuators, A
,
169
(
1
), pp.
234
241
.
17.
He
,
L.
,
Lou
,
J.
,
Du
,
J.
, and
Wang
,
J.
,
2017
, “
Finite Bending of a Dielectric Elastomer Actuator and Pre-Stretch Effects
,”
Int. J. Mech. Sci.
,
122
(
1
), pp.
120
128
.
18.
Wissman
,
J.
,
Finkenauer
,
L.
,
Deseri
,
L.
, and
Majidi
,
C.
,
2014
, “
Saddle-Like Deformation in a Dielectric Elastomer Actuator Embedded With Liquid-Phase Gallium-Indium Electrodes
,”
J. Appl. Phys.
,
116
(
14
), p.
144905
.
19.
Gu
,
G.-Y.
,
Gupta
,
U.
,
Zhu
,
J.
,
Zhu
,
L.-M.
, and
Zhu
,
X.-Y.
,
2015
, “
Feedforward Deformation Control of a Dielectric Elastomer Actuator Based on a Nonlinear Dynamic Model
,”
Appl. Phys. Lett.
,
107
(
4
), p.
042907
.
20.
Xie
,
S. Q.
,
Ramson
,
P. F.
,
Graaf
,
D.
,
Calius
,
E. P.
, and
Anderson
,
I. A.
,
2005
, “
An Adaptive Control System for Dielectric Elastomers
,”
Proceedings of the 2005 IEEE International Conference on Industrial Technology
,
Hong Kong
,
Dec. 14–17
, IEEE, pp.
335
340
.
21.
Randazzo
,
M.
,
Fumagalli
,
M.
,
Metta
,
G.
, and
Sandini
,
G.
,
2010
, “
Closed Loop Control of a Rotational Joint Driven by Two Antagonistic Dielectric Elastomer Actuators
,”
Electroactive Polymer Actuators and Devices (EAPAD) 2010
,
San Diego, CA
,
Apr. 9
, p.
76422D
.
22.
Rizzello
,
G.
,
Naso
,
D.
,
York
,
A.
, and
Seelecke
,
S.
,
2015
, “
Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System
,”
IEEE Trans. Control Syst. Technol.
,
23
(
2
), pp.
632
643
.
23.
Ye
,
Z.
,
Chen
,
Z.
,
Kong
,
K. W.
, and
Chan
,
H.
,
2016
, “
Robust Control of Dielectric Elastomer Diaphragm Actuator for Replicating Human Pulse
,”
Proceedings of the 2016 IEEE International Conference on Automation Science and Engineering (CASE)
,
Fort Worth, TX
,
Aug. 21–25
, IEEE, pp.
188
193
.
24.
Zhang
,
M.
,
Cao
,
X.
,
Chen
,
X.
,
Zhang
,
Z.
,
Chen
,
Z.
, and
Li
,
T.
,
2019
, “
Model-Based Nonlinear Control of the Dielectric Elastomer Actuator With High Robustness and Precision
,”
ASME J. Appl. Mech.
,
86
(
12
), p.
121004
.
25.
Cao
,
J.
,
Liang
,
W.
,
Zhu
,
J.
, and
Ren
,
Q.
,
2018
, “
Control of a Muscle-Like Soft Actuator via a Bioinspired Approach
,”
Bioinspir. Biomim.
,
13
(
6
), p.
066005
.
26.
Xiao
,
Y.
,
Mao
,
J.
,
Shan
,
Y.
,
Yang
,
T.
,
Chen
,
Z.
,
Zhou
,
F.
,
He
,
J.
,
Shen
,
Y.
,
Zhao
,
J.
,
Li
,
T.
, and
Luo
,
Y.
,
2020
, “
Anisotropic Electroactive Elastomer for Highly Maneuverable Soft Robotics
,”
Nanoscale
,
12
(
14
), pp.
7514
7521
.
27.
Cakmak
,
E.
,
Fang
,
X.
,
Yildiz
,
O.
,
Bradford
,
P. D.
, and
Ghosh
,
T. K.
,
2015
, “
Carbon Nanotube Sheet Electrodes for Anisotropic Actuation of Dielectric Elastomers
,”
Carbon
,
89
(
1
), pp.
113
120
.
28.
Cai
,
G.-P.
, and
Lim
,
C. W.
,
2006
, “
Active Control of a Flexible Hub-Beam System Using Optimal Tracking Control Method
,”
Int. J. Mech. Sci.
,
48
(
10
), pp.
1150
1162
.
29.
Zhou
,
F.
,
Yang
,
X.
,
Xiao
,
Y.
,
Zhu
,
Z.
,
Li
,
T.
, and
Xu
,
Z.
,
2020
, “
Electromechanical Analysis and Simplified Modeling of Dielectric Elastomer Multilayer Bending Actuator
,”
AIP Adv.
,
10
(
5
), p.
055003
.
30.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.