Abstract

In this article, a new uncertainty analysis-based framework for data-driven computational mechanics (DDCM) is established. Compared with its practical classical counterpart, the distinctive feature of this framework is that uncertainty analysis is introduced into the corresponding problem formulation explicitly. Instated of only focusing on a single solution in phase space, a solution set is sought for to account for the influence of the multisource uncertainties associated with the data set on the data-driven solutions. An illustrative example provided shows that the proposed framework is not only conceptually new but also has the potential of circumventing the intrinsic numerical difficulties pertaining to the classical DDCM framework.

References

1.
Kirchdoerfer
,
T.
, and
Ortiz
,
M.
,
2016
, “
Data-Driven Computational Mechanics
,”
Comput. Methods. Appl. Mech. Eng.
,
304
, pp.
81
101
.
2.
Kirchdoerfer
,
T.
, and
Ortiz
,
M.
,
2017
, “
Data Driven Computing With Noisy Material Data Sets
,”
Comput. Methods. Appl. Mech. Eng.
,
326
, pp.
622
641
.
3.
Kanno
,
Y.
,
2018
, “
Simple Heuristic for Data-Driven Computational Elasticity With Material Data Involving Noise and Outliers: A Local Robust Regression Approach
,”
Jpn. J. Ind. Appl. Math.
,
35
(
3
), pp.
1085
1101
.
4.
Conti
,
S.
,
Müller
,
S.
, and
Ortiz
,
M.
,
2020
, “
Data-Driven Finite Elasticity
,”
Arch. Ration. Mech. Anal.
,
237
(
1
), pp.
1
33
.
5.
Kanno
,
Y.
,
2019
, “
Mixed-Integer Programming Formulation of a Data-Driven Solver in Computational Elasticity
,”
Optim. Lett.
,
13
(
7
), pp.
1505
1514
.
6.
Kirchdoerfer
,
T.
, and
Ortiz
,
M.
,
2018
, “
Data-Driven Computing in Dynamics
,”
Int. J. Numer. Methods Eng.
,
113
(
11
), pp.
1697
1710
.
7.
Nguyen
,
L. T. K.
, and
Keip
,
M.-A.
,
2018
, “
A Data-Driven Approach to Nonlinear Elasticity
,”
Comput. Struct.
,
194
, pp.
97
115
.
8.
Platzer
,
A.
,
Leygue
,
A.
,
Stainier
,
L.
, and
Ortiz
,
M.
,
2021
, “
Finite Element Solver for Data-Driven Finite Strain Elasticity
,”
Comput. Methods. Appl. Mech. Eng.
,
379
, p.
113756
.
9.
Nguyen
,
L. T. K.
,
Rambausek
,
M.
, and
Keip
,
M.-A.
,
2020
, “
Variational Framework for Distance-Minimizing Method in Data-Driven Computational Mechanics
,”
Comput. Methods. Appl. Mech. Eng.
,
365
, p.
112898
.
10.
Eggersmann
,
R.
,
Kirchdoerfer
,
T.
,
Reese
,
S.
,
Stainier
,
L.
, and
Ortiz
,
M.
,
2019
, “
Model-Free Data-Driven Inelasticity
,”
Comput. Methods. Appl. Mech. Eng.
,
350
, pp.
81
99
.
11.
Carrara
,
P.
,
De Lorenzis
,
L.
,
Stainier
,
L.
, and
Ortiz
,
M.
,
2020
, “
Data-Driven Fracture Mechanics
,”
Comput. Methods. Appl. Mech. Eng.
,
372
, p.
113390
.
12.
Ibañez
,
R.
,
Abisset-Chavanne
,
E.
,
Aguado
,
J. V.
,
Gonzalez
,
D.
,
Cueto
,
E.
, and
Chinesta
,
F.
,
2018
, “
A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity
,”
Arch. Comput. Methods Eng.
,
25
(
1
), pp.
47
57
.
13.
Ibañez
,
R.
,
Borzacchiello
,
D.
,
Aguado
,
J. V.
,
Abisset-Chavanne
,
E.
,
Cueto
,
E.
,
Ladeveze
,
P.
, and
Chinesta
,
F.
,
2017
, “
Data-Driven Non-Linear Elasticity: Constitutive Manifold Construction and Problem Discretization
,”
Comput. Mech.
,
60
(
5
), pp.
813
826
.
14.
Kanno
,
Y.
,
2021
, “
A Kernel Method for Learning Constitutive Relation in Data-Driven Computational Elasticity
,”
Jpn. J. Ind.Appl. Math.
,
38
(
1
), pp.
39
77
.
15.
He
,
Q.
, and
Chen
,
J.-S.
,
2020
, “
A Physics-Constrained Data-Driven Approach Based on Locally Convex Reconstruction for Noisy Database
,”
Comput. Methods. Appl. Mech. Eng.
,
363
, p.
112791
.
16.
Gebhardt
,
C. G.
,
Schillinger
,
D.
,
Steinbach
,
M. C.
, and
Rolfes
,
R.
,
2020
, “
A Framework for Data-Driven Structural Analysis in General Elasticity Based on Nonlinear Optimization: The Static Case
,”
Comput. Methods. Appl. Mech. Eng.
,
365
, p.
112993
.
17.
Gebhardt
,
C. G.
,
Steinbach
,
M. C.
,
Schillinger
,
D.
, and
Rolfes
,
R.
,
2020
, “
A Framework for Data-Driven Structural Analysis in General Elasticity Based on Nonlinear Optimization: The Dynamic Case
,”
Int. J. Numer. Methods Eng.
,
121
(
24
), pp.
5447
5468
.
18.
Tang
,
S.
,
Zhang
,
G.
,
Yang
,
H.
,
Li
,
Y.
,
Liu
,
W. K.
, and
Guo
,
X.
,
2019
, “
MAP123: A Data-Driven Approach to Use 1D Data for 3D Nonlinear Elastic Materials Modeling
,”
Comput. Methods. Appl. Mech. Eng.
,
357
, p.
112587
.
19.
Tang
,
S.
,
Li
,
Y.
,
Qiu
,
H.
,
Yang
,
H.
,
Saha
,
S.
,
Mojumder
,
S.
,
Liu
,
W. K.
, and
Guo
,
X.
,
2020
, “
MAP123-EP: A Mechanistic-Based Data-Driven Approach for Numerical Elastoplastic Analysis
,”
Comput. Methods. Appl. Mech. Eng.
,
364
, p.
112955
.
20.
Tang
,
S.
,
Yang
,
H.
,
Qiu
,
H.
,
Fleming
,
M.
,
Liu
,
W. K.
, and
Guo
,
X.
,
2021
, “
MAP123-EPF: A Mechanistic-Based Data-Driven Approach for Numerical Elastoplastic Modeling at Finite Strain
,”
Comput. Methods. Appl. Mech. Eng.
,
373
, p.
113484
.
21.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
22.
Le
,
C.
,
Norato
,
J.
,
Bruns
,
T.
,
Ha
,
C.
, and
Tortorelli
,
D.
,
2010
, “
Stress-Based Topology Optimization for Continua
,”
Struct. Multidiscip. Optim.
,
41
(
4
), pp.
605
620
.
23.
Silva
,
G. A. d.
,
Aage
,
N.
,
Beck
,
A. T.
, and
Sigmund
,
O.
,
2021
, “
Three-Dimensional Manufacturing Tolerant Topology Optimization With Hundreds of Millions of Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
,
122
(
2
), pp.
548
578
.
You do not currently have access to this content.