Abstract
In this article, a new uncertainty analysis-based framework for data-driven computational mechanics (DDCM) is established. Compared with its practical classical counterpart, the distinctive feature of this framework is that uncertainty analysis is introduced into the corresponding problem formulation explicitly. Instated of only focusing on a single solution in phase space, a solution set is sought for to account for the influence of the multisource uncertainties associated with the data set on the data-driven solutions. An illustrative example provided shows that the proposed framework is not only conceptually new but also has the potential of circumventing the intrinsic numerical difficulties pertaining to the classical DDCM framework.
Issue Section:
Research Papers
References
1.
Kirchdoerfer
, T.
, and Ortiz
, M.
, 2016
, “Data-Driven Computational Mechanics
,” Comput. Methods. Appl. Mech. Eng.
, 304
, pp. 81
–101
. 2.
Kirchdoerfer
, T.
, and Ortiz
, M.
, 2017
, “Data Driven Computing With Noisy Material Data Sets
,” Comput. Methods. Appl. Mech. Eng.
, 326
, pp. 622
–641
. 3.
Kanno
, Y.
, 2018
, “Simple Heuristic for Data-Driven Computational Elasticity With Material Data Involving Noise and Outliers: A Local Robust Regression Approach
,” Jpn. J. Ind. Appl. Math.
, 35
(3
), pp. 1085
–1101
. 4.
Conti
, S.
, Müller
, S.
, and Ortiz
, M.
, 2020
, “Data-Driven Finite Elasticity
,” Arch. Ration. Mech. Anal.
, 237
(1
), pp. 1
–33
. 5.
Kanno
, Y.
, 2019
, “Mixed-Integer Programming Formulation of a Data-Driven Solver in Computational Elasticity
,” Optim. Lett.
, 13
(7
), pp. 1505
–1514
. 6.
Kirchdoerfer
, T.
, and Ortiz
, M.
, 2018
, “Data-Driven Computing in Dynamics
,” Int. J. Numer. Methods Eng.
, 113
(11
), pp. 1697
–1710
. 7.
Nguyen
, L. T. K.
, and Keip
, M.-A.
, 2018
, “A Data-Driven Approach to Nonlinear Elasticity
,” Comput. Struct.
, 194
, pp. 97
–115
. 8.
Platzer
, A.
, Leygue
, A.
, Stainier
, L.
, and Ortiz
, M.
, 2021
, “Finite Element Solver for Data-Driven Finite Strain Elasticity
,” Comput. Methods. Appl. Mech. Eng.
, 379
, p. 113756
. 9.
Nguyen
, L. T. K.
, Rambausek
, M.
, and Keip
, M.-A.
, 2020
, “Variational Framework for Distance-Minimizing Method in Data-Driven Computational Mechanics
,” Comput. Methods. Appl. Mech. Eng.
, 365
, p. 112898
. 10.
Eggersmann
, R.
, Kirchdoerfer
, T.
, Reese
, S.
, Stainier
, L.
, and Ortiz
, M.
, 2019
, “Model-Free Data-Driven Inelasticity
,” Comput. Methods. Appl. Mech. Eng.
, 350
, pp. 81
–99
. 11.
Carrara
, P.
, De Lorenzis
, L.
, Stainier
, L.
, and Ortiz
, M.
, 2020
, “Data-Driven Fracture Mechanics
,” Comput. Methods. Appl. Mech. Eng.
, 372
, p. 113390
. 12.
Ibañez
, R.
, Abisset-Chavanne
, E.
, Aguado
, J. V.
, Gonzalez
, D.
, Cueto
, E.
, and Chinesta
, F.
, 2018
, “A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity
,” Arch. Comput. Methods Eng.
, 25
(1
), pp. 47
–57
. 13.
Ibañez
, R.
, Borzacchiello
, D.
, Aguado
, J. V.
, Abisset-Chavanne
, E.
, Cueto
, E.
, Ladeveze
, P.
, and Chinesta
, F.
, 2017
, “Data-Driven Non-Linear Elasticity: Constitutive Manifold Construction and Problem Discretization
,” Comput. Mech.
, 60
(5
), pp. 813
–826
. 14.
Kanno
, Y.
, 2021
, “A Kernel Method for Learning Constitutive Relation in Data-Driven Computational Elasticity
,” Jpn. J. Ind.Appl. Math.
, 38
(1
), pp. 39
–77
. 15.
He
, Q.
, and Chen
, J.-S.
, 2020
, “A Physics-Constrained Data-Driven Approach Based on Locally Convex Reconstruction for Noisy Database
,” Comput. Methods. Appl. Mech. Eng.
, 363
, p. 112791
. 16.
Gebhardt
, C. G.
, Schillinger
, D.
, Steinbach
, M. C.
, and Rolfes
, R.
, 2020
, “A Framework for Data-Driven Structural Analysis in General Elasticity Based on Nonlinear Optimization: The Static Case
,” Comput. Methods. Appl. Mech. Eng.
, 365
, p. 112993
. 17.
Gebhardt
, C. G.
, Steinbach
, M. C.
, Schillinger
, D.
, and Rolfes
, R.
, 2020
, “A Framework for Data-Driven Structural Analysis in General Elasticity Based on Nonlinear Optimization: The Dynamic Case
,” Int. J. Numer. Methods Eng.
, 121
(24
), pp. 5447
–5468
. 18.
Tang
, S.
, Zhang
, G.
, Yang
, H.
, Li
, Y.
, Liu
, W. K.
, and Guo
, X.
, 2019
, “MAP123: A Data-Driven Approach to Use 1D Data for 3D Nonlinear Elastic Materials Modeling
,” Comput. Methods. Appl. Mech. Eng.
, 357
, p. 112587
. 19.
Tang
, S.
, Li
, Y.
, Qiu
, H.
, Yang
, H.
, Saha
, S.
, Mojumder
, S.
, Liu
, W. K.
, and Guo
, X.
, 2020
, “MAP123-EP: A Mechanistic-Based Data-Driven Approach for Numerical Elastoplastic Analysis
,” Comput. Methods. Appl. Mech. Eng.
, 364
, p. 112955
. 20.
Tang
, S.
, Yang
, H.
, Qiu
, H.
, Fleming
, M.
, Liu
, W. K.
, and Guo
, X.
, 2021
, “MAP123-EPF: A Mechanistic-Based Data-Driven Approach for Numerical Elastoplastic Modeling at Finite Strain
,” Comput. Methods. Appl. Mech. Eng.
, 373
, p. 113484
. 21.
Boyd
, S.
, and Vandenberghe
, L.
, 2004
, Convex Optimization
, Cambridge University Press
, Cambridge, UK
.22.
Le
, C.
, Norato
, J.
, Bruns
, T.
, Ha
, C.
, and Tortorelli
, D.
, 2010
, “Stress-Based Topology Optimization for Continua
,” Struct. Multidiscip. Optim.
, 41
(4
), pp. 605
–620
. 23.
Silva
, G. A. d.
, Aage
, N.
, Beck
, A. T.
, and Sigmund
, O.
, 2021
, “Three-Dimensional Manufacturing Tolerant Topology Optimization With Hundreds of Millions of Local Stress Constraints
,” Int. J. Numer. Methods Eng.
, 122
(2
), pp. 548
–578
. Copyright © 2021 by ASME
You do not currently have access to this content.