Abstract

How friction affects adhesion is addressed. The problem is considered in the context of a very stiff sphere adhering to a compliant, isotropic, linear elastic substrate and experiencing adhesion and frictional slip relative to each other. The adhesion is considered to be driven by very large attractive tractions between the sphere and the substrate that can act only at very small distances between them. As a consequence, the adhesion behavior can be represented by the Johnson–Kendall–Roberts model, and this is assumed to prevail also when frictional slip is occurring. Frictional slip is considered to be resisted by a uniform, constant shear traction at the slipping interface, a model that is considered to be valid for small asperities and for compliant elastomers in contact with stiff material. A simple model for the interaction of friction and adhesion is utilized, in which some of the work done against frictional resistance is assumed to be stored reversibly. This behavior is considered to arise from surface microstructures associated with frictional slip such as interface dislocations, where these microstructures store some elastic strain energy in a reversible manner. When it is assumed that a fixed fraction of the work done against friction is stored reversibly, we obtain good agreement with data.

References

1.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. Lond. A
,
324
(
1558
), pp.
301
313
. 10.1098/rspa.1971.0141
2.
Johnson
,
K. L.
,
1997
, “
Adhesion and Friction Between a Smooth Elastic Spherical Asperity and a Plane Surface
,”
Proc. R. Soc. Lond. A
,
453
(
1956
), pp.
163
179
. 10.1098/rspa.1997.0010
3.
Savkoor
,
A. R.
, and
Briggs
,
G. A. D.
,
1977
, “
The Effect of a Tangential Force on the Contact of Elastic Solids in Adhesion
,”
Proc. R. Soc. Lond. A
,
356
(
1684
), pp.
103
114
. 10.1098/rspa.1977.0123
4.
Carpick
,
R. W.
,
Agrait
,
N.
,
Ogletree
,
D. F.
, and
Salmeron
,
M.
,
1996
, “
Variation of the Interfacial Shear Strength and Adhesion of a Nanometer Sized Contact
,”
Langmuir
,
12
(
13
), pp.
3334
3340
. 10.1021/la9509007
5.
Krick
,
B. A.
,
Vail
,
J. R.
,
Persson
,
B. N. J.
, and
Sawyer
,
W. G.
,
2012
, “
Optical In Situ Micro Tribometer for Analysis of Real Contact Area for Contact Mechanics, Adhesion and Sliding Experiments
,”
Tribol. Lett.
,
45
(
1
), pp.
185
194
. 10.1007/s11249-011-9870-y
6.
Hutchinson
,
J. W.
,
1990
,
Metal–Ceramic Interfaces
,
M.
Rühle
,
A.G.
Evans
,
M.F.
Ashby
, and
J.P.
Hirth
, eds.,
Pergamon
,
New York
.
7.
Kim
,
K. S.
,
McMeeking
,
R. M.
, and
Johnson
,
K. L.
,
1998
, “
Adhesion, Slip, Cohesive Zones and Energy Fluxes for Elastic Spheres in Contact
,”
J. Mech. Phys. Solids
,
46
(
2
), pp.
243
266
. 10.1016/S0022-5096(97)00070-7
8.
Menga
,
N.
,
Carbone
,
G.
, and
Dini
,
D.
,
2018
, “
Do Uniform Tangential Interfacial Stresses Enhance Adhesion?
,”
J. Mech. Phys. Solids
,
112
, pp.
145
156
(see also a corrigendum (2019) that invalidates the analysis and conclusions of the original paper)
. 10.1016/j.jmps.2017.11.022
9.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
10.
Maugis
,
D.
,
1992
, “Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model,”
J. Colloid Interface Sci.
,
150
(
1
), pp.
243
269
. 10.1016/0021-9797(92)90285-T
11.
Keer
,
L. M.
, and
Goodman
,
L. E.
,
1976
, “
Tangential Loading of Two Bodies in Contact
,”
ASME J. Appl. Mech.
,
43
(
3
), pp.
513
514
. 10.1115/1.3423907
12.
Savkoor
,
A. R.
,
1987
, “
Dry Adhesive Friction of Elastomers: A Study of the Fundamental Mechanical Aspects
,”
Ph.D. dissertation
,
Technical University of Delft
,
Delft
.
13.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
,
1965
,
Table of Integrals, Series and Products
,
Academic Press
,
New York
.
14.
Papangelo
,
A.
, and
Ciavarella
,
M.
,
2019
, “
On Mixed-Mode Fracture Mechanics Models for Contact Area Reduction Under Shear Load in Soft Materials
,”
J. Mech. Phys. Solids
,
124
, pp.
159
171
. 10.1016/j.jmps.2018.10.011
15.
Adams
,
G. G.
,
Barber
,
J. R.
,
Ciavarella
,
M.
, and
Rice
,
J. R.
,
2005
, “
A Paradox in Sliding Contact Problems With Friction
,”
ASME J. Appl. Mech.
,
72
(
3
), pp.
450
452
. 10.1115/1.1867992
16.
Hills
,
D. A.
,
Sackfield
,
A.
, and
Churchman
,
C. M.
,
2006
, “
Discussion: ‘A Paradox in Sliding Contact Problems With Friction’
,”
ASME J. Appl. Mech.
,
73
(
5
), pp.
884
886
. 10.1115/1.2201886
You do not currently have access to this content.