This paper presents an exact, two-dimensional (2D) quasi-static elastic analysis of predelaminated composite panels subject to arbitrary transverse pressure loads. The piecewise linear spring model and the shear bridging model are, respectively, used to simulate the normal contact and shear frictional behavior between the interfaces of the existing delamination. This general contact model can be further reduced to the “friction-free model” and the “constrained model” by assigning extreme values to the spring stiffnesses. The analysis yields a closed-form solution for the 2D displacement and stress fields. To predict the delamination propagation, different propagation criteria as suggested in the literature are used. Calculated load–displacement responses and delamination threshold loads are in good agreement with existing experimental data. The results are further compared against simple fracture models and a model that uses a modified classical laminated plate theory for the predelaminated composite with fracture criteria, showing an overestimation of the delamination threshold loads. The 2D elasticity theory that is formulated can be used with confidence to study other multilayered structures with multiple delaminations and subject to arbitrary loading profiles.

References

1.
Abrate
,
S.
,
1998
,
Impact on Composite Structures
,
Cambridge University Press
,
New York
.
2.
Davies
,
G. A. O.
, and
Robinson
,
P.
,
1992
, “
Predicting Failure by Debonding/Delamination
,”
AGARD 74th Structures and Materials Meeting, Debonding/Delamination of Composites
, Patras, Greece, May 24–29, Paper No. 5.
3.
Schoeppner
,
G. A.
, and
Abrate
,
S.
,
2000
, “
Delamination Threshold Loads for Low Velocity Impact on Composite Laminates
,”
Composites, Part A
,
31
(
9
), pp.
903
915
.10.1016/S1359-835X(00)00061-0
4.
Olsson
,
R.
,
Donadon
,
M. V.
, and
Falzon
,
B. G.
,
2006
, “
Delamination Threshold Load for Dynamic Impact on Plates
,”
Int. J. Solids Struct.
,
43
(
10
), pp.
3124
3141
.10.1016/j.ijsolstr.2005.05.005
5.
Kruntcheva
,
M. R.
,
Collop
,
A. C.
, and
Thom
,
N. H.
,
2005
, “
Effect of Bond Condition on Flexible Pavement Performance
,”
J. Transp. Eng.
,
131
(
11
), pp.
880
888
.10.1061/(ASCE)0733-947X(2005)131:11(880)
6.
Hu
,
X.
, and
Walubita
,
L. F.
,
2010
, “
Effects of Layer Interfacial Bonding Conditions on the Mechanistic Responses in Asphalt Pavements
,”
J. Transp. Eng.
,
137
(
1
), pp.
28
36
.10.1061/(ASCE)TE.1943-5436.0000184
7.
Abdul-Baqi
,
A.
, and
Van der Giessen
,
E.
,
2001
, “
Indentation-Induced Interface Delamination of a Strong Film on a Ductile Substrate
,”
Thin Solid Films
,
381
(
1
), pp.
143
154
.10.1016/S0040-6090(00)01344-4
8.
Sjoblom
,
P. O.
,
Hartness
,
J. T.
, and
Cordell
,
T. M.
,
1988
, “
On Low-Velocity Impact Testing of Composite Materials
,”
J. Compos. Mater.
,
22
(
1
), pp.
30
52
.10.1177/002199838802200103
9.
Razi
,
H.
, and
Kobayashi
,
A. S.
,
1993
, “
Delamination in Cross-Ply Laminated Composite Subjected to Low-Velocity Impact
,”
AIAA J.
,
31
(
8
), pp.
1498
1502
.10.2514/3.11800
10.
Zhang
,
X.
,
Bianchi
,
F.
, and
Liu
,
H.
,
2012
, “
Predicting Low-Velocity Impact Damage in Composites by a Quasi-Static Load Model With Cohesive Interface Elements
,”
Aeronaut. J.
,
116
(
1186
), pp.
1367
1381
.http://aerosociety.com/News/Publications/Aero-Journal/Online/939/Predicting-lowvelocity-impact-damage-in-composites-by-a-quasistatic-load-model-with-cohesive-interface-elements
11.
Pagano
,
N. J.
,
1969
, “
Exact Solution for Composite Laminates in Cylindrical Bending
,”
J. Compos. Mater.
,
3
(
3
), pp.
398
411
.10.1177/002199836900300304
12.
Pagano
,
N. J.
,
1970
, “
Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates
,”
J. Compos. Mater.
,
4
(
1
), pp.
20
34
.10.1177/002199837000400102
13.
Xie
,
J.
, and
Waas
,
A. M.
,
2013
, “
2D Elastodynamic Solution for the Impact Response of Laminated Composites
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041015
.10.1115/1.4025276
14.
Qiao
,
P.
, and
Chen
,
F.
,
2012
, “
On the Improved Dynamic Analysis of Delaminated Beam
,”
J. Sound Vib.
,
331
(
5
), pp.
1143
1163
.10.1016/j.jsv.2011.10.008
15.
Brewer
,
J. C.
, and
Lagace
,
P. A.
,
1988
, “
Quadratic Stress Criterion for Initiation of Delamination
,”
J. Compos. Mater.
,
22
(
12
), pp.
1141
1155
.10.1177/002199838802201205
16.
Luo
,
H.
, and
Hanagud
,
S.
,
2000
, “
Dynamics of Delaminated Beams
,”
Int. J. Solids Struct.
,
37
(
10
), pp.
1501
1519
.10.1016/S0020-7683(98)00325-4
17.
Rybicki
,
E. F.
, and
Kanninen
,
M. F.
,
1977
, “
A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral
,”
Eng. Fract. Mech.
,
9
(
4
), pp.
931
938
.10.1016/0013-7944(77)90013-3
18.
Davies
,
G. A. O.
, and
Zhang
,
X.
,
1995
, “
Impact Damage Prediction in Carbon Composite Structures
,”
Int. J. Impact Eng.
,
16
(
1
), pp.
149
170
.10.1016/0734-743X(94)00039-Y
19.
Davies
,
G. A. O.
,
Robinson
,
P.
,
Robson
,
J.
, and
Eady
,
D.
,
1997
, “
Shear Driven Delamination Propagation in Two Dimensions
,”
Composites Part A
,
28
(
8
), pp.
757
765
.10.1016/S1359-835X(97)00015-8
20.
Pardoen
,
G. C.
,
1989
, “
Effect of Delamination on the Natural Frequencies of Composite Laminates
,”
J. Compos. Mater.
,
23
(
12
), pp.
1200
1215
.10.1177/002199838902301201
21.
Xie
,
D.
, and
Waas
,
A. M.
,
2006
, “
Discrete Cohesive Zone Model for Mixed-Mode Fracture Using Finite Element Analysis
,”
Eng. Fract. Mech.
,
73
(
13
), pp.
1783
1796
.10.1016/j.engfracmech.2006.03.006
22.
Amaro
,
A. M.
,
Reis
,
P. N. B.
, and
De Moura
,
M. F. S. F.
,
2011
, “
Delamination Effect on Bending Behaviour in Carbon–Epoxy Composites
,”
Strain
,
47
(
2
), pp.
203
208
.10.1111/j.1475-1305.2008.00520.x
23.
Lammerant
,
L.
, and
Verpoest
,
I.
,
1996
, “
Modelling of the Interaction Between Matrix Cracks and Delaminations During Impact of Composite Plates
,”
Compos. Sci. Technol.
,
56
(
10
), pp.
1171
1178
.10.1016/S0266-3538(96)00071-1
24.
Prabhakar
,
P.
, and
Waas
,
A. M.
,
2013
, “
Micromechanical Modeling to Determine the Compressive Strength and Failure Mode Interaction of Multidirectional Laminates
,”
Composites, Part A
,
50
, pp.
11
21
.10.1016/j.compositesa.2013.03.006
You do not currently have access to this content.