Determining the mechanical properties of soft matter across different length scales is of great importance in understanding the deformation behavior of compliant materials under various stimuli. A pipette aspiration test is a promising tool for such a purpose. A key challenge in the use of this method is to develop explicit expressions of the relationship between experimental responses and material properties particularly when the tested sample has irregular geometry. A simple scaling relation between the reduced creep function and the aspiration length is revealed in this paper by performing a theoretical analysis on the aspiration creep tests of viscoelastic soft solids with arbitrary surface profile. Numerical experiments have been performed on the tested materials with different geometries to validate the theoretical solution. In order to incorporate the effects of the rise time of the creep pressure, an analytical solution is further derived based on the generalized Maxwell model, which relates the parameters in reduced creep function to the aspiration length. Its usefulness is demonstrated through a numerical example and the analysis of the experimental data from literature. The analytical solutions reported here proved to be independent of the geometric parameters of the system under described conditions. Therefore, they may not only provide insight into the deformation behavior of soft materials in aspiration creep tests but also facilitate the use of this testing method to deduce the intrinsic creep/relaxation properties of viscoelastic compliant materials.

References

1.
Ahn
,
B.
, and
Kim
,
J.
,
2010
, “
Measurement and Characterization of Soft Tissue Behavior With Surface Deformation and Force Response Under Large Deformations
,”
Med. Image Anal.
,
14
(
2
), pp.
138
148
.10.1016/j.media.2009.10.006
2.
Wang
,
M.
,
2003
, “
Developing Bioactive Composite Materials for Tissue Replacement
,”
Biomaterials
,
24
(
13
), pp.
2133
2151
.10.1016/S0142-9612(03)00037-1
3.
Desprat
,
N.
,
Richert
,
A.
,
Simeon
,
J.
, and
Asnacios
,
A.
,
2005
, “
Creep Function of a Single Living Cell
,”
Biophys. J.
,
88
(
3
), pp.
2224
2233
.10.1529/biophysj.104.050278
4.
Discher
,
D. E.
,
Janmey
,
P.
, and
Wang
,
Y. L.
,
2005
, “
Tissue Cells Feel and Respond to the Stiffness of Their Substrate
,”
Science
,
310
(
5751
), pp.
1139
1143
.10.1126/science.1116995
5.
Butcher
,
J. T.
,
McQuinn
,
T. C.
,
Sedmera
,
D.
,
Turner
,
D.
, and
Markwald
,
R. R.
,
2007
, “
Transitions in Early Embryonic Atrioventricular Valvular Function Correspond With Changes in Cushion Biomechanics That are Predictable by Tissue Composition
,”
Circ. Res.
,
100
(
10
), pp.
1503
1511
.10.1161/CIRCRESAHA.107.148684
6.
Vaziri
,
A.
, and
Gopinath
,
A.
,
2008
, “
Cell and Biomolecular Mechanics in Silico
,”
Nat. Mater.
,
7
(
1
), pp.
15
23
.10.1038/nmat2040
7.
Lv
,
S.
,
Dudek
,
D. M.
,
Cao
,
Y.
,
Balamurali
,
M. M.
,
Gosline
,
J.
, and
Li
,
H.
,
2010
, “
Designed Biomaterials to Mimic the Mechanical Properties of Muscles
,”
Nature
,
465
(
7294
), pp.
69
73
.10.1038/nature09024
8.
Li
,
B.
,
Cao
,
Y. P.
,
Feng
,
X. Q.
, and
Gao
,
H.
,
2012
, “
Mechanics of Morphological Instabilities and Surface Wrinkling in Soft Materials: A Review
,”
Soft Matter
,
8
(
21
), pp.
5728
5745
.10.1039/c2sm00011c
9.
Cheng
,
Y. T.
, and
Cheng
,
C. M.
,
2004
, “
Scaling, Dimensional Analysis, and Indentation Measurements
,”
Mater. Sci. Eng. R-Rep.
,
44
(
4–5
), pp.
91
149
.10.1016/j.mser.2004.05.001
10.
Kranenburg
,
J. M.
,
Tweedie
,
C. A.
,
van Vliet
,
K. J.
, and
Schubert
,
U. S.
,
2009
, “
Challenges and Progress in High—Throughput Screening of Polymer Mechanical Properties by Indentation
,”
Adv. Mater.
,
21
(
35
), pp.
3551
3561
.10.1002/adma.200803538
11.
Oyen
,
M. L.
,
2007
, “
Sensitivity of Polymer Nanoindentation Creep Measurements to Experimental Variables
,”
Acta Mater.
,
55
(
11
), pp.
3633
3639
.10.1016/j.actamat.2006.12.031
12.
Smith
,
S. B.
,
Finzi
,
L.
, and
Bustamante
,
C.
,
1992
, “
Direct Mechanical Measurements of the Elasticity of Single DNA Molecules by Using Magnetic Beads
,”
Science
,
258
(
5085
), pp.
1122
1126
.10.1126/science.1439819
13.
Ziemann
,
F.
,
Rädler
,
J.
, and
Sackmann
,
E.
,
1994
, “
Local Measurements of Viscoelastic Moduli of Entangled Actin Networks Using an Oscillating Magnetic Bead Micro-Rheometer
,”
Biophys. J.
,
66
(
6
), pp.
2210
2216
.10.1016/S0006-3495(94)81017-3
14.
Sato
,
M.
,
Theret
,
D. P.
,
Ohshima
,
N.
,
Nerem
,
R. M.
, and
Wheeler
,
L. T.
,
1990
, “
Application of the Micropipette Technique to the Measurement of Cultured Porcine Aortic Endothelial Cell Viscoelastic Properties
,”
ASME J. Biomech. Eng.
,
112
(
3
), pp.
263
268
.10.1115/1.2891183
15.
Discher
,
D. E.
,
Mohandas
,
N.
, and
Evans
,
E. A.
,
1994
, “
Molecular Maps of Red Cell Deformation: Hidden Elasticity and In Situ Connectivity
,”
Science
,
266
(
5187
), pp.
1032
1035
.10.1126/science.7973655
16.
Aoki
,
T.
,
Ohashi
,
T.
,
Matsumoto
,
T.
, and
Sato
,
M.
,
1997
, “
The Pipette Aspiration Applied to the Local Stiffness Measurement of Soft Tissues
,”
Ann. Biomed. Eng.
,
25
(
3
), pp.
581
587
.10.1007/BF02684197
17.
Hochmuth
,
R. M.
,
2000
, “
Micropipette Aspiration of Living Cells
,”
J. Biomech.
,
33
(
1
), pp.
15
22
.10.1016/S0021-9290(99)00175-X
18.
Trickey
,
W. R.
,
Lee
,
G. M.
, and
Guilak
,
F.
,
2000
, “
Viscoelastic Properties of Chondrocytes From Normal and Osteoarthritic Human Cartilage
,”
J. Orthop. Res.
,
18
(
6
), pp.
891
898
.10.1002/jor.1100180607
19.
Zhou
,
E. H.
,
Lim
,
C. T.
, and
Quek
,
S. T.
,
2005
, “
Finite Element Simulation of the Micropipette Aspiration of a Living Cell Undergoing Large Viscoelastic Deformation
,”
Mech. Adv. Mater. Struct.
,
12
(
6
), pp.
501
512
.10.1080/15376490500259335
20.
Merryman
,
W. D.
,
Guilak
,
F.
,
Sacks
,
M. S.
, and
Bieniek
,
P. D.
,
2009
, “
Viscoelastic Properties of the Aortic Valve Interstitial Cell
,”
ASME J. Biomech. Eng.
,
131
(
4
), p.
041005
.10.1115/1.3049821
21.
Guevorkian
,
K.
,
Colbert
,
M. J.
,
Durth
,
M.
,
Dufour
,
S.
, and
Brochard-Wyart
,
F.
2010
, “
Aspiration of Biological Viscoelastic Drops
,”
Phys. Rev. Lett.
,
104
(
21
), p.
218101
.10.1103/PhysRevLett.104.218101
22.
Zhao
,
R.
,
Sider
,
K. L.
, and
Simmons
,
C. A.
,
2011
, “
Measurement of Layer-Specific Mechanical Properties in Multilayered Biomaterials by Micropipette Aspiration
,”
Acta Biomater.
,
7
(
3
), pp.
1220
1227
.10.1016/j.actbio.2010.11.004
23.
Zhou
,
E. H.
,
Xu
,
F.
,
Quek
,
S. T.
, and
Lim
,
C. T.
,
2012
, “
A Power-Law Rheology-Based Finite Element Model for Single Cell Deformation
,”
Biomech. Model Mech.
,
11
(
7
), pp.
1075
1084
.10.1007/s10237-012-0374-y
24.
Zhao
,
R.
,
Wyss
,
K.
, and
Simmons
,
C. A.
,
2009
, “
Comparison of Analytical and Inverse Finite Element Approaches to Estimate Cell Viscoelastic Properties by Micropipette Aspiration
,”
J. Biomech.
,
42
(
16
), pp.
2768
2773
.10.1016/j.jbiomech.2009.07.035
25.
Cao
,
Y. P.
,
Ji
,
X. Y.
, and
Feng
,
X. Q.
,
2010
, “
Geometry Independence of the Normalized Relaxation Functions of Viscoelastic Materials in Indentation
,”
Philos. Mag.
,
90
(
12
), pp.
1639
1655
.10.1080/14786430903439826
26.
Cao
,
Y. P.
,
Zhang
,
M. G.
, and
Feng
,
X. Q.
,
2013
, “
Indentation Method for Measuring the Viscoelastic Kernel Function of Nonlinear Viscoelastic Soft Materials
,”
J. Mater. Res.
,
28
(
6
), pp.
806
816
.10.1557/jmr.2012.431
27.
Baaijens
,
F. P.
,
Trickey
,
W. R.
,
Laursen
,
T. A.
, and
Guilak
,
F.
,
2005
, “
Large Deformation Finite Element Analysis of Micropipette Aspiration to Determine the Mechanical Properties of the Chondrocyte
,”
Ann. Biomed. Eng.
,
33
(
4
), pp.
494
501
.10.1007/s10439-005-2506-3
28.
Lakes
,
R. S.
,
2009
,
Viscoelastic Materials
,
Cambridge University Press
, New York.
29.
Barenblatt
,
G. I.
,
1996
,
Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics
, Cambridge University Press, New York.
30.
Pesic
,
P.
,
2005
,
Sky in a Bottle
,
MIT
,
Cambridge, MA
.
31.
Christensen
,
R. M.
,
1982
,
Theory of Viscoelasticity: An Introduction
,
Academic
,
New York
.
32.
DS Simulia Corp.,
2010
, “
ABAQUS User's Manual
,” Version 6.10, Dassault Systemes, Providence, RI.
33.
Simo
,
J. C.
,
1987
, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Meth. Appl. Mech. Eng.
,
60
(
2
), pp.
153
173
.10.1016/0045-7825(87)90107-1
34.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.10.1063/1.1712836
35.
Rivlin
,
R. S.
,
1948
, “
Large Elastic Deformations of Isotropic Materials. IV. Further Developments of the General Theory
,”
Philos. Trans. R. Soc., A
,
241
(
835
), pp.
379
397
.10.1098/rsta.1948.0024
36.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
,
1979
, “
Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression
,”
Am. J. Physiol.
,
237
(
5
), pp.
H620
H631
.
37.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.10.1016/0022-5096(93)90013-6
38.
Zhang
,
M. G.
,
Cao
,
Y. P.
,
Li
,
G. Y.
, and
Feng
,
X. Q.
, “
Pipette Aspiration of Hyperelastic Compliant Materials: Theoretical Analysis, Simulations, and Experiments
” (unpublished).
39.
Chien
,
W. Z.
,
1947
, “
Large Deflection of a Circular Clamped Plate Under Uniform Pressure
,”
Acta Phys. Sin.
,
7
(
2
), pp.
102
107
.
40.
Wang
,
Q. M.
,
Mohan
,
A. C.
,
Oyen
,
M. L.
, and
Zhao
,
X. H.
,
2014
, “
Separating Viscoelasticity and Poroelasticity of Gels With Different Length and Time Scales
,”
Acta Mech. Sin.
,
30
(
1
), pp.
20
27
.10.1007/s10409-014-0015-z
You do not currently have access to this content.