The theoretical investigation of the size dependent behavior of a Bernoulli–Euler dielectric nanobeam based on the strain gradient elasticity theory is presented in this paper. The variational principle is utilized to derive the governing equations and boundary conditions, in which the coupling between strain and electric field, strain gradient and electric field, and strain gradient and strain gradient are taken into account. Different from the classical beam theory, the size dependent behaviors of dielectric nanobeams can be described. The static bending problems of elastic, pure dielectric (nonpiezoelectric), and piezoelectric cantilever beams are solved to show the effects of the electric field-strain gradient coupling and the strain gradient elasticity. Comparisons between the classical beam theory and the strain gradient beam theory are given in this study. It is found that the beam deflection predicted by the strain gradient beam theory is smaller than that by the classical beam theory when the beam thickness is comparable to the internal length scale parameters and the external applied voltage obviously affects the deflection of the dielectric and piezoelectric nanobeam. The presented model is very useful for understanding the electromechanical coupling in nanoscale dielectric structures and is very helpful for designing devices based on cantilever beams.

References

1.
Craighead
,
H. G.
,
2000
, “
Nanoelectromechanical Systems
,”
Science
,
290
(
5496
), pp.
1532
1535
.10.1126/science.290.5496.1532
2.
Ekinci
,
K. L.
, and
Roukes
,
M. L.
,
2005
, “
Nanoelectromechanical Systems
,”
Rev. Sci. Instrum.
,
76
(
6
), p.
061101
.10.1063/1.1927327
3.
Dequesnes
,
M.
,
Rotkin
,
S. V.
, and
Aluru
,
N. R.
,
2002
, “
Calculation of Pull-In Voltages for Carbon-Nanotube-Based Nanoelectromechanical Switches
,”
Nanotechnology
,
13
, pp.
120
131
.10.1088/0957-4484/13/1/325
4.
Tang
,
Z.
,
Xu
,
Y.
,
Li
,
G.
, and
Aluru
,
N. R.
,
2005
, “
Physical Models for Coupled Electromechanical Analysis of Silicon Nanoelectromechanical Systems
,”
J. Appl. Phys.
,
97
(
11
), p.
114304
.10.1063/1.1897483
5.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
.10.1016/0956-7151(94)90502-9
6.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
,
Wang
,
J.
, and
Tong
,
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
(
8
), pp.
1477
1508
.10.1016/S0022-5096(03)00053-X
7.
Li
,
X. F.
,
Wang
,
B. L.
, and
Lee
,
K. Y.
,
2009
, “
Size Effects of the Bending Stiffness of Nanowires
,”
J. Appl. Phys.
,
105
, p.
074306
.10.1063/1.3103322
8.
Sharma
,
P.
,
Maranganti
,
R.
, and
Sharma
,
N. D.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green's Function Solution and Embedded Inclusions
,”
Phys. Rev. B
,
74
(
1
), p.
014110
.10.1103/PhysRevB.74.014110
9.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2008
, “
Enhanced Size-Dependent Piezoelectricity and Elasticity in Nanostructures Due to the Flexoelectric Effect
,”
Phys. Rev. B
,
77
(
12
), p.
125424
.10.1103/PhysRevB.77.125424
10.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2009
, “
Erratum: Enhanced Size-Dependent Piezoelectricity and Elasticity in Nanostructures Due to the Flexoelectric Effect
,”
Phys. Rev. B
,
79
(
11
), p.
119904
.10.1103/PhysRevB.79.119904
11.
Mindlin
,
R. D.
,
1964
, “
Micro-Structure in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
16
(
1
), pp.
51
78
.10.1007/BF00248490
12.
Mindlin
,
R. D.
,
1965
, “
Second Gradient of Strain and Surface Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
(
4
), pp.
417
438
.10.1016/0020-7683(65)90006-5
13.
Toupin
,
R. A.
,
1962
, “
Elastic Materials With Couple-Stresses
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
385
414
.10.1007/BF00253945
14.
Eringen
,
A. C.
,
1966
, “
Linear Theory Micropolar Elasticity
,”
J. Math. Mech.
,
15
(
6
), pp.
909
923
.0.1512/iumj.1966.15.15060
15.
Eringen
,
A. C.
,
1972
, “
Nonlocal Polar Elastic Continua
,”
Int. J. Eng. Sci.
,
10
, pp.
1
16
.10.1016/0020-7225(72)90070-5
16.
Fleck
,
N. A.
and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1825
1857
.10.1016/0022-5096(93)90072-N
17.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity—I. Theory
,”
J. Mech. Phys. Solids
,
47
, pp.
1239
1263
.10.1016/S0022-5096(98)00103-3
18.
Hutchinson
,
J. W.
, and
Fleck
,
N. A.
,
2001
, “
A Reformulation of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
49
(
10
), pp.
2245
2271
.10.1016/S0022-5096(01)00029-1
19.
Beskos
,
D. E.
,
Papargyri–Beskou
,
S.
,
Tsepoura
,
K. G.
, and
Polyzos
,
D.
,
2003
, “
Bending and Stability Analysis of Gradient Elastic Beams
,”
Int. J. Solids Struct.
,
40
(
2
), pp.
385
400
.10.1016/S0020-7683(02)00522-X
20.
Maranganti
,
R.
, and
Sharma
,
P.
,
2007
, “
Length Scales at Which Classical Elasticity Breaks Down for Various Materials
,”
Phys. Rev. Lett.
,
98
(
20
), p.
209903(E)
.10.1103/PhysRevLett.98.209903
21.
Sharma
,
N. D.
,
Landis
,
C. M.
, and
Sharma
,
P.
,
2010
, “
Piezoelectric Thin-Film Superlattices Without Using Piezoelectric Materials
,”
J. Appl. Phys.
,
108
(2), p.
024304
.10.1063/1.3443404
22.
Sharma
,
N. D.
,
Landis
,
C.
, and
Sharma
,
P.
,
2012
, “
Erratum: Piezoelectric Thin-Film Superlattices Without Using Piezoelectric Materials
,”
J. Appl. Phys.
,
111
(
5
),
p
. 059901.10.1063/1.3684987
23.
Lee
,
D.
,
Yoon
,
A.
,
Jang
,
S. Y.
,
Yoon
,
J.-G.
,
Chung
,
J.-S.
,
Kim
,
M.
,
Scott
,
J. F.
, and
Noh
,
T. W.
,
2011
, “
Giant Flexoelectric Effect in Ferroelectric Epitaxial Thin Films
,”
Phys. Rev. Lett.
,
107
(
5
), p.
057602
.10.1103/PhysRevLett.107.057602
24.
Shen
,
Z. Y.
, and
Chen
,
W.
,
2012
, “
Converse Flexoelectric Effect in Comb Electrode Piezoelectric Microbeam
,”
Phys. Lett. A
,
376
, pp.
1661
1663
.10.1016/j.physleta.2012.03.049
25.
Hu
,
S. L.
, and
Shen
,
S. P.
,
2009
, “
Electric Field Gradient Theory With Surface Effect for Nano-Dielectrics
,”
CMC: Comput. Mater. Continua
,
13
(
1
), pp.
63
88
.10.3970/cmc.2012.028.081
26.
Shen
,
S. P.
and
Hu
,
S. L.
,
2010
, “
A Theory of Flexoelectricity With Surface Effect for Elastic Dielectrics
,”
J. Mech. Phys. Solids
,
58
(
5
), pp.
665
677
.10.1016/j.jmps.2010.03.001
27.
Lazopoulos
,
K. A.
, and
Lazopoulos
,
A. K.
,
2010
, “
Bending and Buckling of Thin Strain Gradient Elastic Beams
,”
Eur. J. Mech. A/Solids
,
29
(
5
), pp.
837
843
.10.1016/j.euromechsol.2010.04.001
28.
Cross
,
L. E.
,
2006
, “
Flexoelectric Effects: Charge Separation in Insulating Solids Subjected to Elastic Strain Gradients
,”
J. Mater. Sci.
,
41
(
1
), pp.
53
63
.10.1007/s10853-005-5916-6
29.
Yang
,
J. S.
,
2004
,
An Introduction to the Theory of Piezoelectricity
,
Kluwer Academic
,
Boston
.
30.
Maugin
,
G. A.
,
1980
, “
The Method of Virtual Power in Continuum Mechanics: Application to Coupled Fields
,”
Acta Mech.
,
35
(
1–2
), pp.
1
70
.10.1007/BF01190057
31.
Park
,
S. K.
, and
Gao
,
X. L.
,
2006
, “
Bernoulli-Euler Beam Model Based on a Modified Couple Stress Theory
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2355
2359
.10.1088/0960-1317/16/11/015
32.
Tadmor
,
E. B.
, and
Kosa
,
G.
,
2003
, “
Electromechanical Coupling Correction for Piezoelectric Layered Beams
,”
J. Microelectromech. Syst.
,
36
(
13
), pp.
899
906
.10.1109/JMEMS.2003.820286
33.
Ma
,
H. M.
,
Gao
,
X. L.
, and
Reddy
,
J. N.
,
2008
, “
A Microstructure-Dependent Timoshenko Beam Model Based on a Modified Couple Stress Theory
,”
J. Mech. Phys. Solids
,
56
, pp.
3379
3391
.10.1016/j.jmps.2008.09.007
34.
Yang
,
F.
,
Chong
,
A. C.
,
Lam
,
D. C. C.
, and
Tong
,
P.
,
2002
, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2731
2743
.10.1016/S0020-7683(02)00152-X
35.
Reddy
,
J. N.
,
2007
, “
Nonlocal Theories for Bending, Buckling and Vibration of Beams
,”
Int. J. Eng. Sci.
,
45
, pp.
288
307
.10.1016/j.ijengsci.2007.04.004
36.
Zhou
,
S. J.
,
Kong
,
S. L.
,
Nie
,
Z. F.
, and
Wang
,
K.
,
2009
, “
Static and Dynamic Analysis of Micro Beams Based on Strain Gradient Elasticity Theory
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
487
498
.10.1016/j.ijengsci.2008.08.008
37.
Liang
,
X.
, and
Shen
,
S. P.
,
2012
, “
Effect of Electrostatic Force on a Piezoelectric Nanobeam
,”
Smart Mater. Struct.
,
21
(
1
), p.
015001
.10.1088/0964-1726/21/1/015001
38.
Rivera
,
C.
,
2011
, “
Effects of Electrostatic Force on Piezoelectric Materials Under High Electric Field: Impact on GaN-Based Nanoscale Structures
,”
J. Appl. Phys.
,
109
(
1
), p.
013513
.10.1063/1.3524259
39.
McMeeking
,
R. M.
, and
Landis
,
C. M.
,
2005
, “
Electrostatic Forces and Stored Energy for Deformable Dielectric Materials
,”
J. Appl. Mech.
,
72
(
4
), pp.
581
590
.10.1115/1.1940661
40.
Toupin
,
R. A.
,
1956
, “
The Elastic Dielectric
,”
J. Ration. Mech. Anal.
,
5
(
6
), pp.
849
915
.10.1512/iumj.1956.5.05033
41.
Shen
,
S. P.
, and
Kuang
,
Z. B.
,
1999
, “
An Active Control Model of Laminated Piezothermoelastic Plate
,”
Int. J. Solids Struct.
,
36
, pp.
1925
-
1947
.10.1016/S0020-7683(98)00068-7
42.
Kuang
,
Z. B.
,
2002
,
Nonlinear Continuum Mechanics
, Shanghai Jiaotong University Press, Shanghai, China.
43.
Kuang
,
Z. B.
,
2008
, “
Some Variational Principles in Elastic Dielectric and Elastic Magnetic Materials
,”
Eur. J. Mech. A/Solid.
,
27
(
3
), pp.
504
514
.10.1016/j.euromechsol.2007.10.001
44.
Kuang
,
Z. B.
,
2009
, “
Internal Energy Variational Principles and Governing Equations in Electrostatic Analysis
,”
Int. J. Solids Struct.
,
46
, pp.
902
911
.10.1016/j.ijsolstr.2008.10.001
45.
Liu
,
C. C.
,
Hu
,
S. L.
, and
Shen
,
S. P.
,
2012
, “
Effect of Flexoelectricity on Electrostatic Potential in Bent Piezoelectric Nanowires
,”
Smart Mater. Struct.
,
21
(
11
), p. 115024.10.1088/0964-1726/21/11/115024
You do not currently have access to this content.