In situ low-voltage transmission electron microscopy (TEM) was performed to study the evolution of small Pt clusters on suspended graphene. Pt clusters, trapped by the edge of holes, generally take a stable shape of truncated octahedron for sizes ranging from sub-1 to ∼5 nm. The interaction to the graphene dots takes in charge when they form composite nanostructures embedded in graphene. The Pt clusters are slowly flattened due to hole enlargement under electron irradiation. The planar structure is maintained by the peripheral Pt-C bonds and instantly collapses into a three-dimensional (3D) cluster if one side is detached from the edge. Based on the heat transfer model, the thermal effect can be excluded under the experimental condition. Atomistic evolution can be attributed to the electron irradiation. Molecular dynamics simulations revealed that the evolution kinetics was found to be dominated by the surface diffusion (characterized by the migration barrier Em), the temperature (the thermal activation energy ∼5kBT), and the scattering from electrons (the maximum transferred energy Emax). The corresponding energies are comparable for the Pt cluster system, leading to similar evolution behaviors. A different scenario in graphene systems is due to the large difference in agitations, i.e., Emax ≫ Em ∼ 5kBT at 3000 K. This unique behavior comes from TEM observation, implying that electron beam irradiation can be utilized as a unique tool in shaping carbon nanostructures.

References

1.
Stankovich
,
S.
,
Dikin
,
D. A.
,
Dommett
,
G. H. B.
,
Kohlhaas
,
K. M.
,
Zimney
,
E. J.
,
Stach
,
E. A.
,
Piner
,
R. D.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2006
, “
Graphene-Based Composite Materials
,”
Nature
,
442
(
7100
), pp.
282
286
.10.1038/nature04969
2.
Kamat
,
P. V.
,
2009
, “
Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support
,”
J. Phys. Chem. Lett.
,
1
(
2
), pp.
520
527
.10.1021/jz900265j
3.
Lightcap
,
I. V.
,
Kosel
,
T. H.
, and
Kamat
,
P. V.
,
2010
, “
Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons With Reduced Graphene Oxide
,”
Nano Lett.
,
10
(
2
), pp.
577
583
.10.1021/nl9035109
4.
Girit
,
Ç. Ö.
,
Meyer
,
J. C.
,
Erni
,
R.
,
Rossell
,
M. D.
,
Kisielowski
,
C.
,
Yang
,
L.
,
Park
,
C.-H.
,
Crommie
,
M. F.
,
Cohen
,
M. L.
,
Louie
,
S. G.
, and
Zettl
,
A.
,
2009
, “
Graphene at the Edge: Stability and Dynamics
,”
Science
,
323
(
5922
), pp.
1705
1708
.10.1126/science.1166999
5.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.10.1126/science.1157996
6.
Huang
,
H.
,
Chen
,
H.
,
Sun
,
D.
, and
Wang
,
X.
,
2012
, “
Graphene Nanoplate-Pt Composite as a High Performance Electrocatalyst for Direct Methanol Fuel Cells
,”
J. Power Sources
,
204
(
15
), pp.
46
52
.10.1016/j.jpowsour.2012.01.023
7.
Xu
,
F.
,
Sun
,
Y.
,
Zhang
,
Y.
,
Shi
,
Y.
,
Wen
,
Z.
, and
Li
,
Z.
,
2011
, “
Graphene–Pt Nanocomposite for Nonenzymatic Detection of Hydrogen Peroxide With Enhanced Sensitivity
,”
Electrochem. Commun.
,
13
(
10
), pp.
1131
1134
.10.1016/j.elecom.2011.07.017
8.
Wu
,
H.
,
Wexler
,
D.
, and
Liu
,
H.
,
2011
, “
Durability Investigation of Graphene-Supported Pt Nanocatalysts for PEM Fuel Cells
,”
J. Solid State Electrochem.
,
15
(
5
), pp.
1057
1062
.10.1007/s10008-011-1317-8
9.
Shen
,
J.
,
Yan
,
B.
,
Shi
,
M.
,
Ma
,
H.
,
Li
,
N.
, and
Ye
,
M.
,
2012
, “
Fast and Facile Preparation of Reduced Graphene Oxide Supported Pt-Co Electrocatalyst for Methanol Oxidation
,”
Mater. Res. Bull.
,
47
(
6
), pp.
1486
1493
.10.1016/j.materresbull.2012.02.025
10.
Fampiou
, I
.
, and
Ramasubramaniam
,
A.
,
2012
, “
Binding of Pt Nanoclusters to Point Defects in Graphene: Adsorption, Morphology, and Electronic Structure
,”
J. Phys. Chem. C
,
116
(
11
), pp.
6543
6555
.10.1021/jp2110117
11.
Yoo
,
E.
,
Okada
,
T.
,
Akita
,
T.
,
Kohyama
,
M.
,
Honma
,
I.
, and
Nakamura
,
J.
,
2011
, “
Sub-Nano-Pt Cluster Supported on Graphene Nanosheets for CO Tolerant Catalysts in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
196
(
1
), pp.
110
115
.10.1016/j.jpowsour.2010.07.024
12.
Okazaki-Maeda
,
K.
,
Morikawa
,
Y.
,
Tanaka
,
S.
, and
Kohyama
,
M.
,
2010
, “
Structures of Pt Clusters on Graphene by First-Principles Calculations
,”
Surf. Sci.
,
604
(
2
), pp.
144
154
.10.1016/j.susc.2009.11.001
13.
Blonski
,
P.
, and
Hafner
,
J.
,
2011
, “
Geometric and Magnetic Properties of Pt Clusters Supported on Graphene: Relativistic Density-Functional Calculations
,”
J. Chem. Phys.
,
134
(
15
), p.
154705
.10.1063/1.3577517
14.
Zhang
,
H.
,
Lv
,
X.
,
Li
,
Y.
,
Wang
,
Y.
, and
Li
,
J.
,
2010
, “
P25-Graphene Composite as a High Performance Photocatalyst
,”
ACS Nano
,
4
(
1
), pp.
380
386
.10.1021/nn901221k
15.
Yoo
,
E.
,
Okata
,
T.
,
Akita
,
T.
,
Kohyama
,
M.
,
Nakamura
,
J.
, and
Honma
,
I.
,
2009
, “
Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface
,”
Nano Lett.
,
9
(
6
), pp.
2255
2259
.10.1021/nl900397t
16.
Janowska
, I
.
,
Moldovan
,
M.-S.
,
Ersen
,
O.
,
Bulou
,
H.
,
Chizari
,
K.
,
Ledoux
,
M. J.
, and
Pham-Huu
,
C.
,
2011
, “
High Temperature Stability of Platinum Nanoparticles on Few-Layer Graphene Investigated by In Situ High Resolution Transmission Electron Microscopy
,”
Nano Res.
,
4
(
5
), pp.
511
521
.10.1007/s12274-011-0107-z
17.
Moldovan
,
M. S.
,
Bulou
,
H.
,
Dappe
,
Y. J.
,
Janowska
,
I.
,
Bégin
,
D.
,
Pham-Huu
,
C.
, and
Ersen
,
O.
,
2012
, “
On the Evolution of Pt Nanoparticles on Few-Layer Graphene Supports in the High-Temperature Range
,”
J. Phys. Chem. C
,
116
(
16
), pp.
9274
9282
.10.1021/jp2124235
18.
Hashimoto
,
A.
, and
Takeguchi
,
M.
,
2012
, “
In Situ Observation of Pt Nanoparticles on Graphene Layers Under High Temperature Using Aberration-Corrected Transmission Electron Microscopy
,”
J. Electron Microsc.
,
61
(
6
), pp.
409
422
.10.1093/jmicro/dfs060
19.
Uzengi Aktürk
,
O.
, and
Tomak
,
M.
,
2009
, “
Au_{n}Pt_{n} Clusters Adsorbed on Graphene Studied by First-Principles Calculations
,”
Phys. Rev. B
,
80
(
8
), p.
085417
.10.1103/PhysRevB.80.085417
20.
Qin
,
W.
, and
Li
,
X.
,
2010
, “
A Theoretical Study on the Catalytic Synergetic Effects of Pt/Graphene Nanocomposites
,”
J. Phys. Chem. C
,
114
(
44
), pp.
19009
19015
.10.1021/jp1072523
21.
Li
,
X. S.
,
Cai
,
W. W.
,
An
,
J. H.
,
Kim
,
S.
,
Nah
,
J.
,
Yang
,
D.
,
Piner
,
R.
,
Velamakanni
,
A.
,
Jung
,
I.
,
Tutuc
,
E.
,
Banerjee
,
S. J.
,
Colombo
,
L.
, and
Ruoff
,
R. S.
,
2009
, “
Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils
,”
Science
,
324
(
5932
), pp.
1312
1314
.10.1126/science.1171245
22.
Ferrari
,
A. C.
,
Meyer
,
J. C.
,
Scardaci
, V
.
,
Casiraghi
,
C.
,
Lazzeri
,
M.
,
Mauri
,
F.
,
Piscanec
,
S.
,
Jiang
,
D.
,
Novoselov
,
K. S.
,
Roth
,
S.
, and
Geim
,
A. K.
,
2006
, “
Raman Spectrum of Graphene and Graphene Layers
,”
Phys. Rev. Lett.
,
97
(
18
), p.
187401
.10.1103/PhysRevLett.97.187401
23.
Regan
,
W.
,
Alem
,
N.
,
Alemán
,
B.
,
Geng
,
B.
,
Girit
,
C.
,
Maserati
,
L.
,
Wang
,
F.
,
Crommie
,
M.
, and
Zettl
,
A.
,
2010
, “
A Direct Transfer of Layer-Area Graphene
,”
Appl. Phys. Lett.
,
96
(
11
), p.
113102
.10.1063/1.3337091
24.
Wang
,
H.
,
Wang
,
Q.
,
Cheng
,
Y.
,
Li
,
K.
,
Yao
,
Y.
,
Zhang
,
Q.
,
Dong
,
C.
,
Wang
,
P.
,
Schwingenschlögl
,
U.
,
Yang
,
W.
, and
Zhang
,
X. X.
,
2012
, “
Doping Monolayer Graphene With Single Atom Substitutions
,”
Nano Lett.
,
12
(
1
), pp.
141
144
.10.1021/nl2031629
25.
Giannozzi
,
P.
,
Baroni
,
S.
,
Bonini
,
N.
,
Calandra
,
M.
,
Car
,
R.
,
Cavazzoni
,
C.
,
Ceresoli
,
D.
,
Chiarotti
,
G. L.
,
Cococcioni
,
M.
,
Dabo
,
I.
,
Dal Corso
,
A.
,
de Gironcoli
,
S.
,
Fabris
,
S.
,
Fratesi
,
G.
,
Gebauer
,
R.
,
Gerstmann
,
U.
,
Gougoussis
,
C.
,
Kokalj
,
A.
,
Lazzeri
,
M.
,
Martin-Samos
,
L.
,
Marzari
,
N.
,
Mauri
,
F.
,
Mazzarello
,
R.
,
Paolini
,
S.
,
Pasquarello
,
A.
,
Paulatto
,
L.
,
Sbraccia
,
C.
,
Scandolo
,
S.
,
Sclauzero
,
G.
,
Seitsonen
,
A. P.
,
Smogunov
,
A.
,
Umari
,
P.
, and
Wentzcovitch
,
R. M.
,
2009
, “
Quantum Espresso: A Modular and Open-Source Software Project for Quantum Simulations of Materials
,”
J. Phys.: Condens. Matter.
,
21
(
39
), p.
395502
.10.1088/0953-8984/21/39/395502
26.
Baroni
,
S.
,
de Gironcoli
,
S.
,
Dal Corso
,
A.
, and
Giannozzi
,
P.
,
2001
, “
Phonons and Related Crystal Properties From Density-Functional Perturbation Theory
,”
Rev. Mod. Phys.
,
73
(
2
), pp.
515
562
.10.1103/RevModPhys.73.515
27.
Rappe
,
A. M.
,
Rabe
,
K. M.
,
Kaxiras
,
E.
, and
Joannopoulos
,
J. D.
,
1990
, “
Optimized Pseudopotentials
,”
Phys. Rev. B
,
41
(
2
), pp.
1227
1230
.10.1103/PhysRevB.41.1227
28.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
,
1996
, “
Generalized Gradient Approximation Made Simple
,”
Phys. Rev. Lett.
,
77
(
18
), pp.
3865
3868
.10.1103/PhysRevLett.77.3865
29.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular-Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
30.
Lammps Molecular Dynamics Simulator, May 7, Sandia National Laboratories, Albuquerque, NM, http://lammps.sandia.gov
31.
Zhu
,
W.
,
Wang
,
H.
, and
Yang
,
W.
,
2012
, “
Evolution of Graphene Nanoribbons Under Low-Voltage Electron Irradiation
,”
Nanoscale
,
4
(
15
), pp.
4555
4561
.10.1039/c2nr30648d
32.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.10.1063/1.481208
33.
Foiles
,
S. M.
,
Baskes
,
M. I.
, and
Daw
,
M. S.
,
1986
, “
Embedded-Atom-Method Functions for the fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys
,”
Phys. Rev. B
,
33
(
12
), pp.
7983
7991
.10.1103/PhysRevB.33.7983
34.
Rodriguez-Manzo
,
J. A.
,
Cretu
,
O.
, and
Banhart
,
F.
,
2010
, “
Trapping of Metal Atoms in Vacancies of Carbon Nanotubes and Graphene
,”
ACS Nano
,
4
(
6
), pp.
3422
3428
.10.1021/nn100356q
35.
Krasheninnikov
,
A. V.
,
Lehtinen
,
P. O.
,
Foster
,
A. S.
,
Pyykkö
,
P.
, and
Nieminen
,
R. M.
,
2009
, “
Embedding Transition-Metal Atoms in Graphene: Structure, Bonding, and Magnetism
,”
Phys. Rev. Lett.
,
102
(
12
), p.
126807
.10.1103/PhysRevLett.102.126807
36.
Qiao
,
B.
,
Wang
,
A.
,
Yang
,
X.
,
Allard
,
L. F.
,
Jiang
,
Z.
,
Cui
,
Y.
,
Liu
,
J.
,
Li
,
J.
, and
Zhang
,
T.
,
2011
, “
Single-Atom Catalysis of CO Oxidation Using Pt1/FeOx
,”
Nat. Chem.
,
3
(
8
), pp.
634
641
.10.1038/nchem.1095
37.
Lee
,
S.
,
Fan
,
C.
,
Wu
,
T.
, and
Anderson
,
S. L.
,
2004
, “
CO Oxidation on Aun/TiO2 Catalysts Produced by Size-Selected Cluster Deposition
,”
J. Am. Chem. Soc.
,
126
(
18
), pp.
5682
5683
.10.1021/ja049436v
38.
Banhart
,
F.
,
1999
, “
Irradiation Effects in Carbon Nanostructures
,”
Rep. Prog. Phys.
,
62
(
8
), pp.
1181
1221
.10.1088/0034-4885/62/8/201
39.
Kiritani
,
M.
,
1976
, “
Electron-Radiation Induced Diffusion of Point-Defects in Metals
,”
J. Phys. Soc. Jpn.
,
40
(
4
), pp.
1035
1042
.10.1143/JPSJ.40.1035
40.
Wang
,
H.
,
Li
,
K.
,
Cheng
,
Y.
,
Wang
,
Q.
,
Yao
,
Y.
,
Schwingenschlögl
,
U.
,
Zhang
,
X.
, and
Yang
,
W.
,
2012
, “
Interaction Between Single Gold Atom and the Graphene Edge: A Study Via Aberration-Corrected Transmission Electron Microscopy
,”
Nanoscale
,
4
(
9
), pp.
2920
2924
.10.1039/c2nr00059h
41.
Ding
,
F.
,
Larsson
,
P.
,
Larsson
,
J. A.
,
Ahuja
,
R.
,
Duan
,
H.
,
Rosn
,
A.
, and
Bolton
,
K.
,
2007
, “
The Importance of Strong Carbon-Metal Adhesion for Catalytic Nucleation of Single-Walled Carbon Nanotubes
,”
Nano Lett.
,
8
(
2
), pp.
463
468
.10.1021/nl072431m
42.
Jin
,
C.
,
Lan
,
H.
,
Peng
,
L.
,
Suenaga
,
K.
, and
Iijima
,
S.
,
2009
, “
Deriving Carbon Atomic Chains From Graphene
,”
Phys. Rev. Lett.
,
102
(
20
), p.
205501
.10.1103/PhysRevLett.102.205501
You do not currently have access to this content.