Ballistic tests were performed on single-yarn, single-layer and ten-layer targets of Kevlar® KM2 (600 and 850 denier), Dyneema® SK-65 and PBO® (500 denier). The objective was to develop data for validation of numerical models so, multiple diagnostic techniques were used: (1) ultra-high speed photography, (2) high-speed video and (3) nickel-chromium wire technique. These techniques allowed thorough validation of the numerical models through five different paths. The first validation set was at the yarn level, where the transverse wave propagation obtained with analytical and numerical simulations was compared to that obtained in the experiments. The second validation path was at the single-layer level: the propagation of the pyramidal wave observed with the high speed camera was compared to the numerical simulations. The third validation consisted of comparing, for the targets with ten layers, the pyramid apex and diagonal positions from tests and simulations. The fourth validation, which is probably the most relevant, consisted of comparing the numerical and experimental ballistic limits. Finally for the fifth validation set, nickel-chromium wires were used to record electronically the waves propagating in the fabrics. It is shown that for the three materials the waves recorded during the tests match well the waves predicted by the numerical model.

References

1.
Rakhamatulin
,
Kh. A.
, 1996,
Strength Under High Transient Loads
,
Israel Program for Scientific Translation
,
Jerusalem (in English)
.
2.
Jameson
,
J. W.
,
Stewart
,
G. M.
,
Petterson
,
D. R.
, and
Odell
,
F. A.
, 1962, “
Dynamic Distribution of Strain in Textile Materials Under High-Speed Impact: Part III: Strain-Time-Position History in Yarns
,
Text. Res. J.
32
(
10
), pp.
858
860
.
3.
Smith
,
J. C.
,
Blandford
,
J. M.
, and
Schiefer
,
H. F.
, 1960, “
Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading: Part VI: Velocities of Strain Waves Resulting from Impact
,”
Text. Res. J.
30
(
10
),pp.
752
760
.
4.
Roylance
,
D.
and
Wang
,
Su-Su
, 1979, “
Penetration Mechanics of Textile Structures
,” US Army, Natick Research and Development Command, Technical Report No. Natick/TR–80/021.
5.
Shim
,
V. P. W.
,
Tan
,
V. B. C.
, and
Tay
,
T. E.
, 1995, “
Modelling Deformation and Damage Characteristics of Woven Fabric Under Small Projectile Impact
,”
Int. J. Impact Eng.
16
, pp.
585
605
.
6.
Billon
,
H. H.
and
Robinson
,
D. J.
, 2001, “
Models for the Ballistic Impact of Fabric Armour
,”
Int. J. Impact Eng.
25
, pp.
411
422
.
7.
Zeng
,
X. S.
,
Shim
,
V. P. W.
, and
Tan
,
V. B. C.
, 2005, “
Influence of Boundary Conditions on the Ballistic Performance of High-Strength Fabric Targets
,”
Int. J. Impact Eng.
32
, pp.
631
642
.
8.
Novotny
,
W. R.
,
Cepus
,
E.
,
Shahkarami
,
A.
,
Vaziri
,
R.
, and
Poursartip
,
A.
, 2007, “
Numerical Investigation of the Ballistic Efficiency of Multi-Ply Fabric Armours During the Early Stages of Impact
,”
Int. J. Impact Eng.
34
, pp.
71
88
.
9.
Cunniff
,
P. M.
and
Ting
,
J.
, 1999, “
Development of a Numerical Model to Characterize the Ballistic Behaviour of Fabrics
,”
Proc. of 18th International Symposium on Ballistics
,
W.G.
Reinecke
, ed.,
Technomic Publishing Co., Inc.
,
Lancaster, PA
, pp.
822
828
.
10.
Johnson
,
G. R.
,
Beissel
,
S. R.
, and
Cunniff
,
P. M.
, 1999, “
A Computational Model for Fabrics Subjected to Ballistic Impact
,”
Proc. of 18th International Symposium on Ballistics
,
W. G.
Reinecke
, ed.,
Technomic Publishing Co., Inc.
,
Lancaster, PA
, 1999, pp.
962
969
.
11.
Tan
,
V. B. C.
and
Ching
,
T. W.
, 2006, “
Computational Simulation of Fabric Armour Subjected to Ballistic Impact
,”
Int. J. Impact Eng.
32
, pp.
1737
1751
.
12.
Grujicic
,
M.
,
Arakere
,
G.
,
He
,
T.
,
Gogulapati
,
M.
, and
Cheeseman
,
B. A.
, 2008, “
A Numerical Investigation of the Influence of Yarn-Level Finite-Element Model on Energy Absorption by a Flexible-Fabric Armor During Ballistic Impact
,”
J. of Materials: Design and Applications
,
222
, pp.
259
276
.
13.
Nilakantan
,
G.
,
Keefe
,
M.
,
Bogetti
,
T.
, and
Gillespie
,
J.
, 2010, “
Multiscale Modeling for the Impact of Textile Fabrics Based on Hybrid Element Analysis
,”
Int. J. Impact Eng.
37
, pp.
1056
1071
.
14.
Shockey
,
D. A.
,
Erlich
,
D. C.
, and
Simons
,
J. W.
Lightweight Fragment Barriers for Commercial Aircraft
,”
W. G.
Reinecke
, ed.,
Proc. of the 18th Int. Symp. on Ballistics
,
Technomic Publishing Co., Inc.
,
Lancaster, PA
, pp.
1192
1199
.
15.
Bogetti
,
T. A.
and
Cheeseman
,
B. A.
, 2003, “
Ballistic Impact Into Fabric and Compliant Composite Laminates
,”
Composite Structures
61
, pp.
161
173
.
16.
Duan
,
Y.
,
Keefe
,
M.
,
Bogetti
,
T. A.
, and
Cheeseman
,
B. A.
, 2005, “
Modeling Friction Effects on the Ballistic Impact Behavior of a Single-Ply High-Strength Fabric
,”
Int. J. Impact Eng.
31
, pp.
996
1012
.
17.
Duan
,
Y.
,
Keefe
,
M.
,
Bogetti
,
T. A.
,
Cheeseman
,
B. A.
, and
Powers
,
B.
, 2006, “
A Numerical Investigation of the Influence of Friction on Energy Absorption by a High-Strength Fabric Subjected to Ballistic Impact
,”
Int. J. Impact Eng.
32
, pp.
1299
1312
.
18.
Rao
,
M. P.
,
Duan
,
Y.
,
Keefe
,
M.
,
Powers
,
B. M.
, and
Bogetti
,
T. A.
, 2009, “
Modelling the Effects of Yarn Material Properties and Friction on the Ballistic Impact of a Plain-Weave Fabric
,”
Composite Structures
89
(
4
),pp.
556
566
.
19.
Chocron
,
S.
,
Figueroa
,
E.
,
King
,
N.
,
Kirchoerfer
,
T.
,
Nicholls
,
A. E.
,
Sagebiel
,
E.
,
Weiss
,
C.
, and
Freitas
,
C. J.
2010, “
Modeling and Validation of Full Fabric Targets Under Ballistic Impact
,”
Compos. Sci. Technol.
70
(
13
),pp.
2012
2022
.
20.
Pritchard
,
D.
, 2002, “
A Study of a Steel Right Circular Cylinder (rcc) Striking 23 plies of KM2 Fabric Using the LS-DYNA Lagrangian Hydrocode
,” Army Research Laboratory, Technical Report No. ARL-TR–2673.
21.
Ivanov
,
I.
and
Tabiei
,
A.
, 2002, “
Flexible Woven Fabric Micro-Mechanical Material Model With Fiber Reorientation
,”
Mech. Adv. Matl. Struct.
9
(
1
),pp.
37
51
.
22.
Lim
,
C. T.
,
Shim
,
V. P. W.
, and
Ng
,
Y. H.
, 2003, “
Finite-Element Modeling of the Ballistic Impact of Fabric Armor
,”
Int. J. Impact Eng.
28
,pp.
13
31
.
23.
King
,
M. J.
,
Jearanaisilawong
,
P.
, and
Socrate
,
S.
, 2005, “
A Continuum Constitutive Model for the Mechanical Behavior of Wowen Fabrics
,”
Int. J. Solids Struct.
42
, pp.
3867
3896
.
24.
Peng
,
X. Q.
and
Cao
,
J.
, 2005, “
A Continuum Mechanics-Based Non-Orthogonal Constitutive Model for Woven Composite Fabrics
,”
Composites, Part A
,
36
, pp.
859
874
.
25.
Shahkarami
,
A.
and
Vaziri
,
R.
, 2007, “
A Continuum Shell Finite Element Model for Impact Simulation of Woven Fabrics
,”
Int. J. Impact Eng.
34
, pp.
104
119
.
26.
Grujicic
,
M.
,
Bell
,
W. C.
,
He
,
T.
, and
Cheeseman
,
B. A.
, 2008, “
Development and Verification of a Meso-Scale Based Dynamic Material Model for Plain-Woven Single-Ply Ballistic Fabric
,”
J. Mater. Sci.
43
, pp.
6301
6323
.
27.
Grujicic
,
M.
,
Bell
,
W. C.
,
Arakere
,
G.
,
He
,
T.
, and
Cheesman
,
B. A.
, 2009, “
A Meso-Scale Unit-Cell Based Material Model for the Single-Ply Flexible-Fabric Armor
,”
Mater. Des.
30
(
9
), pp.
3690
3704
.
28.
Stahlecker
,
Z.
,
Mobasher
,
B.
,
Rajan
,
S. D.
, and
Pereira
,
J. M.
, 2009, “
Development of Reliable Modeling Methodologies for Engine Fan Blade Out Containment Analysis. Part II: Finite Element Analysis.
,”
Int. J. Impact Eng.
36
, pp.
447
459
.
29.
Parson
,
E. M.
,
Weerasooriya
,
T.
,
Sarva
,
S.
, and
Socrate
,
S.
, 2010, “
Impact of Woven Fabric: Experiments and Mesostructure-Based Continuum-Level Simulations
,”
J. Mech. Phys. Solids
58
, pp.
1995
2021
.
30.
Barbero
,
E. J.
,
Lonetti
,
P.
, and
Sikkil
,
K. K.
, 2006, “
Finite Element Continuum Damage Modeling of Plain-Weave Reinforced Composites
,”
Composites, Part B
37
, pp.
137
147
.
31.
Rao
,
M. P.
,
Nilakantan
,
G.
,
Keefe
,
M.
,
Powers
,
B. M.
, and
Bogetti
,
T. A.
, 2009, “
Global/Local Modeling of Ballistic Impact Onto Woven Fabrics
,”
J. Compos. Mater.
43
, pp.
445
467
.
32.
Bazhenov
,
S. L.
,
Dukhovskii
,
I. A.
,
Kovalev
,
P. I.
, and
Rozhkov
,
A. N.
, 2001, “
The Fracture of SVM Aramide Fibers Upon a High-Velocity Transverse Impact
,”
Polym. Sci., Ser. A
1
, pp.
61
71
.
33.
Wang
,
L.
,
Field
,
J. E.
, and
Sun
,
Q.
, 1992, “
Dynamic Behaviour of Pre-Stressed High Strength Polymeric Yarns Transversely Impacted by a Blade
,”
Proceeding of the Int. Symp. on Intense Dynamic Loading and its Effects
,
Chinese Society of Theoretical and Applied Mechanics, Sichuan University Press
,
Chengdu, China
, pp.
354
359
.
34.
Carr
,
D. J.
, 1982, “
Failure Mechanisms of Yarns Subjected to Ballistic Impact
,”
J. Mater. Sci. Lett.
18
(
7
), pp.
585
588
.
35.
Wilde
,
A. E.
,
Ricca
,
J. J.
,
Cole
,
L. M.
, and
Rogers
,
J. M.
, 1970, “
Dynamic Response of a Constrained Fibrous System Subjected to Transverse Impact. Part I - Transient Responses and Breaking Energies of Nylon Yarns
,” Army Materials and Mechanics Research Center, Report No. AMMRC TR 70–32.
36.
Field
,
J. E.
and
Sun
,
Q.
, 1990, “
A High Speed Photographic Study of Impact on Fibres and Woven Fabrics
,” SPIE Vol.1358, 19th International Congress on High-Speed Photography and Photonics, pp.
703
712
.
37.
van der Werff
,
H.
and
Heisserer
,
U.
, 2010, private communication
38.
Mulkern
,
T. J.
and
Raftenberg
,
M. N.
, 2002, “
Kevlar km2 Yarn and Fabric Strength Under Quasistatic Tension
,” Report No. ARL-TR–2865.
39.
Cheng
,
M.
,
Chen
,
W.
, and
Weerasooriya
,
T.
2005, “
Mechanical Properties of Kevlar km2 Single Fiber
,”
J. Eng. Mater. Technol.
127
, pp.
197
203
.
40.
Tan
,
V. B. C.
,
Zeng
,
X. S.
, and
Shim
,
V. P. W.
, 2008, “
Characterization and Constitutive Modeling of Aramid Fibers at High Strain Rates
,”
Int. J. Impact Eng.
35
(
11
) pp.
1303
1313
.
41.
Koh
,
C. P.
,
Shim
,
V. P. W.
,
Tan
,
V. B. C.
, and
Tan
,
B. L.
, 2008, “
Response of a High-Strength Flexible Laminate to Dynamic Tension
,’
Int. J. Impact Eng.
35
, pp.
559
568
.
42.
Chocron
,
S.
,
Ranjam Samant
,
K.
,
Nicholls
,
A. E.
,
Figueroa
,
E.
,
Weiss
,
C.
,
Walker
,
J. D.
, and
Anderson
,
C. E.
Jr.
, 2009, “
Measurement of Strain in Fabrics Under Ballistic Impact With Embedded Nichrome Wires. Part I: Technique
,”
Int. J. Impact Eng.
,
36
(
10–11
), pp.
1296
1302
.
You do not currently have access to this content.