In this paper, the thermodynamically and mathematically consistent modeling of anisotropic materials under shock loading is considered. The equation of state used represents the mathematical and physical generalizations of the classical Mie–Grüneisen equation of state for isotropic material and reduces to the Mie–Grüneisen equation of state in the limit of isotropy. Based on the full decomposition of the stress tensor into the generalized deviatoric part and the generalized spherical part of the stress tensor (Lukyanov, A. A., 2006, “Thermodynamically Consistent Anisotropic Plasticity Model,” Proceedings of IPC 2006, ASME, New York; 2008, “Constitutive Behaviour of Anisotropic Materials Under Shock Loading,” Int. J. Plast., 24, pp. 140–167), a nonassociated incompressible anisotropic plasticity model based on a generalized “pressure” sensitive yield function and depending on generalized deviatoric stress tensor is proposed for the anisotropic materials behavior modeling under shock loading. The significance of the proposed model includes also the distortion of the yield function shape in tension, compression, and in different principal directions of anisotropy (e.g., 0 deg and 90 deg), which can be used to describe the anisotropic strength differential effect. The proposed anisotropic elastoplastic model is validated against experimental research, which has been published by Spitzig and Richmond (“The Effect of Pressure on the Flow Stress of Metals,” Acta Metall., 32, pp. 457–463), Lademo et al. (“An Evaluation of Yield Criteria and Flow Rules for Aluminium Alloys,” Int. J. Plast., 15(2), pp. 191–208), and Stoughton and Yoon (“A Pressure-Sensitive Yield Criterion Under a Non-Associated Flow Rule for Sheet Metal Forming,” Int. J. Plast., 20(4–5), pp. 705–731). The behavior of aluminum alloy AA7010 T6 under shock loading conditions is also considered. A comparison of numerical simulations with existing experimental data shows good agreement with the general pulse shape, Hugoniot elastic limits, and Hugoniot stress levels, and suggests that the constitutive equations perform satisfactorily. The results are presented and discussed, and future studies are outlined.

1.
Lukyanov
,
A. A.
, 2008, “
Constitutive Behaviour of Anisotropic Materials Under Shock Loading
,”
Int. J. Plast.
0749-6419,
24
, pp.
140
167
.
2.
Hill
,
R.
, 1950,
Mathematical Theory of Plasticity
,
Clarendon
,
Oxford
.
3.
Bassani
,
J. L.
, 1977, “
Yield Characterization of Metals With Transversely Isotropic Plastic Properties
,”
Int. J. Mech. Sci.
0020-7403,
19
(
11
), pp.
651
660
.
4.
Hosford
,
W. F.
, 1985, “
Comments on Anisotropic Yield Criteria
,”
Int. J. Mech. Sci.
0020-7403,
27
(
7–8
), pp.
423
427
.
5.
Gotoh
,
M.
, 1977, “
A Theory of Plastic Anisotropy Based on a Yield Function of Fourth Order (Plane Stress State)—I/II
,”
Int. J. Mech. Sci.
0020-7403,
19
(
9
), pp.
505
512
.
6.
Gotoh
,
M.
, 1977, “
A Theory of Plastic Anisotropy Based on a Yield Function of Fourth Order (Plane Stress State)—I/II
,”
Int. J. Mech. Sci.
0020-7403,
19
(
9
), pp.
513
520
.
7.
Arminjon
,
M.
,
Bacroix
,
B.
,
Imbault
,
D.
, and
Raphanel
,
J.
, 1994, “
A Fourth Order Plastic Potentials for Anisotropic Metals and Its Calculation From Texture Data
,”
Acta Mech.
0001-5970,
107
, pp.
33
51
.
8.
Barlat
,
F.
, and
Lian
,
J.
, 1989, “
Plastic Behavior and Stretchability of Sheet Metals. Part I: A Yield Function for Orthotropic Sheet Under Plane Stress Conditions
,”
Int. J. Plast.
0749-6419,
5
(
1
), pp.
51
66
.
9.
Barlat
,
F.
,
Lege
,
D. J.
, and
Brem
,
J. C.
, 1991, “
A Six-Component Yield Function for Anisotropic Materials
,”
Int. J. Plast.
0749-6419,
7
(
7
), pp.
693
712
.
10.
Barlat
,
F.
,
Becker
,
R. C.
,
Hayashida
,
Y.
,
Maeda
,
Y.
,
Yanagawa
,
M.
,
Chung
,
K.
,
Brem
,
J. C.
,
Lege
,
D. J.
,
Matsui
,
K.
,
Murtha
,
S. J.
, and
Hattori
,
S.
, 1997, “
Yielding Description of Solution Strengthened Aluminum Alloys
,”
Int. J. Plast.
0749-6419,
13
(
4
), pp.
385
401
.
11.
Karafillis
,
A. P.
, and
Boyce
,
M. C.
, 1993, “
A General Anisotropic Yield Criterion Using Bounds and a Transformation Weighting Tensor
,”
J. Mech. Phys. Solids
0022-5096,
41
(
12
), pp.
1859
1886
.
12.
Barlat
,
F.
,
Maeda
,
Y.
,
Chung
,
K.
,
Yanagawa
,
M.
,
Brem
,
J. C.
,
Hayashida
,
Y.
,
Lege
,
D. J.
,
Matsui
,
K.
,
Murtha
,
S. J.
,
Hattori
,
S.
,
Becker
,
R. C.
, and
Makosey
,
S.
, 1997, “
Yield Function Development for Aluminum Alloy Sheets
,”
J. Mech. Phys. Solids
0022-5096,
45
(
11–12
), pp.
1727
1763
.
13.
Barlat
,
F.
,
Brem
,
J. C.
,
Yoon
,
J. W.
,
Chung
,
K.
,
Dick
,
R. E.
,
Lege
,
D. J.
,
Pourboghrat
,
F.
,
Choi
,
S. -H.
, and
Chu
,
E.
, 2003, “
Plane Stress Yield Function for Aluminum Alloy Sheets—Part 1: Theory
,”
Int. J. Plast.
0749-6419,
19
(
9
), pp.
1297
1319
.
14.
Bron
,
F.
, and
Besson
,
J.
, 2004, “
A Yield Function for Anisotropic Materials Application to Aluminum Alloys
,”
Int. J. Plast.
0749-6419,
20
(
4–5
), pp.
937
963
.
15.
Darrieulat
,
M.
, and
Montheillet
,
F.
, 2003, “
A Texture Based Continuum Approach for Predicting the Plastic Behaviour of Rolled Sheet
,”
Int. J. Plast.
0749-6419,
19
(
4
), pp.
517
546
.
16.
Stoughton
,
T. B.
, and
Yoon
,
J. W.
, 2004, “
A Pressure-Sensitive Yield Criterion Under a Non-Associated Flow Rule for Sheet Metal Forming
,”
Int. J. Plast.
0749-6419,
20
(
4–5
), pp.
705
731
.
17.
Kowalczyk
,
K.
, and
Gambin
,
W.
, 2004, “
Model of Plastic Anisotropy Evolution With Texture—Dependent Yield Surface
,”
Int. J. Plast.
0749-6419,
20
(
1
), pp.
19
54
.
18.
Hu
,
W.
, 2005, “
An Orthotropic Yield Criterion in a 3-D General Stress State
,”
Int. J. Plast.
0749-6419,
21
(
9
), pp.
1771
1796
.
19.
Hashiguchi
,
K.
, 2005, “
Generalized Plastic Flow Rule
,”
Int. J. Plast.
0749-6419,
21
(
2
), pp.
321
351
.
20.
Hu
,
W.
, 2007a, “
Constitutive Modeling of Orthotropic Sheet Metals by Presenting Hardening-Induced Anisotropy
,”
Int. J. Plast.
0749-6419,
23
, pp.
620
639
.
21.
Hu
,
W.
, 2007b, “
A Novel Quadratic Yield Model to Describe the Feature of Multi-Yield-Surface of Rolled Sheet Metals
,”
Int. J. Plast.
0749-6419,
23
, pp.
2004
2028
.
22.
Barlat
,
F.
,
Yoon
,
J. W.
, and
Cazacu
,
O.
, 2007, “
On Linear Transformations of Stress Tensors for the Description of Plastic Anisotropy
,”
Int. J. Plast.
0749-6419,
23
(
5
), pp.
876
896
.
23.
Spitzig
,
W. A.
, and
Richmond
,
O.
, 1984, “
The Effect of Pressure on the Flow Stress of Metals
,”
Acta Metall.
0001-6160,
32
, pp.
457
463
.
24.
Lademo
,
O. -G.
,
Hopperstad
,
O. S.
, and
Langseth
,
M.
, 1999, “
An Evaluation of Yield Criteria and Flow Rules for Aluminium Alloys
,”
Int. J. Plast.
0749-6419,
15
(
2
), pp.
191
208
.
25.
Bourne
,
N. K.
, and
Stevens
,
G. S.
, 2001, “
A Gas Gun for Plane and Shear Loading of Inert and Explosive Targets
,”
Rev. Sci. Instrum.
0034-6748,
72
(
4
), pp.
2214
2218
.
26.
Steinberg
,
D. J.
, 1991, “
Equation of State and Strength Properties of Selected Materials
,” Lawrence Livermore National Laboratory, Report No. UCRL-MA-106439.
27.
Meyers
,
M. A.
, 1994,
Dynamic Behavior of Materials
,
Wiley
,
New York
.
28.
Zaretsky
,
E. B.
,
Kanel
,
G. I.
,
Razorenov
,
S. V.
, and
Baumung
,
K.
, 2005, “
Impact Strength Properties of Nickel-Based Refractory Superalloys at Normal and Elevated Temperatures
,”
Int. J. Impact Eng.
0734-743X,
31
(
1
), pp.
41
54
.
29.
Gebbeken
,
N.
,
Greulich
,
S.
, and
Pietzsch
,
A.
, 2006, “
Hugoniot Properties for Concrete Determined by Full-Scale Detonation Experiments and Flyer-Plate-Impact Tests
,”
Int. J. Impact Eng.
0734-743X,
32
, pp.
2017
2031
.
30.
Bronkhorst
,
C. A.
,
Cerreta
,
E. K.
,
Xue
,
Q.
,
Maudlin
,
P. J.
,
Mason
,
T. A.
, and
Gray
,
G. T.
, III
, 2006, “
An Experimental and Numerical Study of the Localization Behavior of Tantalum and Stainless Steel
,”
Int. J. Plast.
0749-6419,
22
(
7
), pp.
1304
1335
.
31.
Millett
,
J. C. F.
, and
Bourne
,
N. K.
, 2001, “
Lateral Stress Measurements in a Shock Loaded Alumina: Shear Strength and Delayed Failure
,”
J. Mater. Sci.
0022-2461,
36
(
14
), pp.
3409
3414
.
32.
Espinosa
,
H.
,
Mello
,
M.
, and
Xu
,
Y.
, 1997, “
A Variable Sensitivity Displacement Interferometer With Application to Wave Propagation Experiments
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
123
131
.
33.
Gray
,
G. T.
, III
,
Lopez
,
M. F.
,
Bourne
,
N. K.
,
Millett
,
J. C. F.
, and
Vecchio
,
K. S.
, 2002, “
Influence of Microstructural Anisotropy on the Spallation of 1080 Eutectoid Steel
,”
Shock Compression of Condensed Matter-2001
,
M. D.
Furnish
,
N. N.
Thadhani
, and
Y.
Horie
, eds.,
AIP
,
Melville, NY
, pp.
479
483
.
34.
Anderson
,
C. E.
,
Cox
,
P. A.
,
Johnson
,
G. R.
, and
Maudlin
,
P. J.
, 1994, “
A Constitutive Formulation for Anisotropic Materials Suitable for Wave Propagation Computer Program—II
,”
Comput. Mech.
0178-7675,
15
, pp.
201
223
.
35.
Espinosa
,
H.
,
Lu
,
H. -C.
,
Zavattieri
,
P.
, and
Dwivedi
,
S.
, 2001, “
A 3-D Finite Deformation Anisotropic Visco-Plasticity Model for Fiber Composites
,”
J. Compos. Mater.
0021-9983,
35
(
5
), pp.
369
410
.
36.
Espinosa
,
H. D.
, and
Zavattieri
,
P. D.
, 2003, “
A Grain Level Model for the Study of Failure Initiation and Evolution in Polycrystalline Brittle Materials. Part I: Theory and Numerical Implementation
,”
Mech. Mater.
0167-6636,
35
, pp.
333
364
.
37.
Lukyanov
,
A. A.
, 2006, “
Thermodynamically Consistent Anisotropic Plasticity Model
,”
Proceedings of IPC 2006
,
ASME
,
New York
.
38.
Ilyushin
,
A. A.
, 1961, “
On the Postulate of Stability
,”
J. Appl. Math. Mech.
0021-8928,
25
, pp.
503
507
.
39.
Lankford
,
W. T.
,
Snyder
,
S. C.
, and
Bausher
,
J. A.
, 1950, “
New Criteria for Predicting the Press Performance of Deep Drawing Sheets
,”
Trans. Am. Soc. Met.
0096-7416,
42
, pp.
1197
1232
.
40.
Hosford
,
W. F.
, 1993,
The Mechanics of Crystals and Textured Polycrystals
,
Oxford University Press
,
Oxford
.
41.
Kocks
,
U. F.
,
Tóme
,
C. N.
, and
Wenk
,
H. R.
, 1998,
Texture and Anisotropy
,
Cambridge University Press
,
Cambridge
.
42.
Spolidor
,
A.
, 1996, “
Determination of Rolling Anisotropy by Extensometry
,”
J. Mater. Sci.
0022-2461,
31
, pp.
5731
5741
.
43.
Kitamura
,
K.
,
Miyazaki
S.
,
Iwai
,
H.
, and
Kohl
,
M.
, 1999, “
Effect of Rolling Reduction on the Deformation Texture and Anisotropy of Transformation Strain in Ti-50.2at%Ni Thin Plates
,”
Mater. Sci. Eng., A
0921-5093,
758
, pp.
273
275
.
44.
Oden
,
J. T.
, 1972,
Finite Elements of Nonlinear Continua
,
McGraw-Hill
,
New York
.
45.
Hallquist
,
J. O.
, and
Whirley
,
R. G.
, 1989, “
DYNA3D User Manual, Nonlinear Dynamic Analysis in Three Dimensions
,” University of California, Lawrence Livermore National Laboratory, Report No. UCID-19592.
46.
Espinosa
,
H. D.
,
Raiser
,
G.
,
Clifton
,
R. J.
, and
Ortiz
,
M.
, 1992, “
Performance of the Star-Shaped Flyer in the Study of Brittle Materials: Three Dimensional Computer Simulations and Experimental Observations
,”
J. Appl. Phys.
0021-8979,
72
(
8
), pp.
3451
3457
.
47.
Hallquist
,
J. O.
, 1998,
LS-DYNA Theoretical Manual
,
Livermore Software Technology Corporation
,
Livermore, CA
.
48.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
, 2000,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
New York
.
49.
De Vuyst
,
T.
,
Vignjevic
,
R.
,
Bourne
,
N. K.
, and
Campbell
,
J.
, 2004, “
Modelling of Spall in an Anisotropic Aluminium Alloy
,”
Space Debris
,
Kluwer Academic
,
Dordrecht, The Netherlands
,
2
(4), pp.
225
232
.
This content is only available via PDF.
You do not currently have access to this content.