This paper considers a piezoelectric ceramic layer with a surface electrode. It focuses on the effect of the layer thickness on the electrode tip fields. A closed-form solution for the electromechanical fields at the electrode tip is obtained and is expressed in terms of the applied electric field intensity factor, which can be obtained exactly for infinite layer thickness and numerically for finite layer thickness. The stress, electric displacement, and electric field are plotted to show the effect of layer thickness. It is found that the stresses and field intensities at the electrode tip can be reduced considerably by decreasing the thickness of the piezoelectric layer, confirming the previous finding. The paper also gives a solution for two identical and collinear surface electrodes. The relative distance between the electrodes is observed to have significant influence on the electromechanical field in the piezoelectric layer.

1.
Winzer
,
S. R.
,
Shankar
,
N.
, and
Ritter
,
A.
, 1989, “
Designing Cofired Multilayer Electrostrictive Actuators for Reliability
,”
J. Am. Ceram. Soc.
0002-7820,
72
, pp.
2246
2257
.
2.
Hao
,
T. H.
,
Gong
,
X.
, and
Suo
,
Z.
, 1996, “
Fracture Mechanics for the Design of Ceramic Multilayer Actuators
,”
J. Mech. Phys. Solids
0022-5096,
44
, pp.
23
48
.
3.
Shindo
,
Y.
,
Narita
,
F.
,
Horiguchi
,
K.
,
Magara
,
Y.
, and
Yoshida
,
K.
, 2003, “
Electric Fracture and Polarization Switching Properties of Piezoelectric Ceramic PZT Studied by the Modified Small Punch Test
,”
Acta Mater.
1359-6454,
51
, pp.
4773
4782
.
4.
Ru
,
C. Q.
,
Mao
,
X.
, and
Epstein
,
M.
, 1998, “
Electric-Field Induced Interfacial Cracking in Multilayer Electrostrictive Actuators
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
1301
1318
.
5.
Deng
,
W.
, and
Meguid
,
S. A.
, 1998, “
Analysis of Conducting Rigid Inclusion at the Interface of Two Dissimilar Piezoelectric Materials
,”
ASME Trans. J. Appl. Mech.
0021-8936,
65
, pp.
76
84
.
6.
Gong
,
Z.
, and
Suo
,
Z.
, 1996, “
Reliability of Ceramic Multilayer Actuators: A Nonlinear Finite Element Simulation
,”
J. Mech. Phys. Solids
0022-5096,
44
, pp.
751
769
.
7.
Yang
,
W.
, and
Suo
,
Z.
, 1994, “
Cracking in Ceramic Actuators Caused by Electrostriction
,”
J. Mech. Phys. Solids
0022-5096,
42
, pp.
649
663
.
8.
Shindo
,
Y.
,
Yoshida
,
M.
,
Narita
,
F.
, and
Horiguchi
,
K.
, 2004, “
Electroelastic Field Concentrations Ahead of Electrodes in Multilayer Piezoelectric Actuators: Experiment and Finite Element Simulation
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
1109
1124
.
9.
He
,
H. H.
, and
Ye
,
R. Q.
, 2000, “
Concentration of Electric Field Near Electrodes on Piezoelectric Layer
,”
Theor. Appl. Fract. Mech.
0167-8442,
33
, pp.
101
106
.
10.
Li
,
X.-F.
, and
Tang
,
G. J.
, 2003, “
Electroelastic Analysis for a Piezoelectric Layer With Surface Electrodes
,”
Mech. Res. Commun.
0093-6413,
30
, pp.
345
351
.
11.
Li
,
X. F.
, and
Duan
,
X. Y.
, 2001, “
Electroelastic Analysis of a Piezoelectric Layer With Electrodes
,”
Int. J. Fract.
0376-9429,
111
, pp.
L73
L78
.
12.
Wang
,
B. L.
, and
Mai
,
Y.-W.
, 2005, “
An Electrode Analysis for Multilayer Ceramic Actuators
,”
Sens. Actuators, A
0924-4247,
121
, pp.
203
212
.
13.
Wang
,
B. L.
, 2004, “
A Circular Surface Electrode on a Piezoelectric Layer
,”
J. Appl. Phys.
0021-8979,
95
, pp.
4267
4274
.
14.
Li
,
X. F.
, and
Lee
,
K. Y.
, 2004, “
Electric and Elastic Behaviors of a Piezoelectric Ceramic With a Charged Surface Electrode
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
424
432
.
15.
Ru
,
C. Q.
, 2000, “
Exact Solution for Finite Electrode Layers Embedded at the Interface of Two Piezoelectric Half-Planes
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
693
708
.
16.
Narita
,
F.
,
Yoshida
,
M.
, and
Shindo
,
Y.
, 2006, “
Electroelastic Effect Induced by Electrode Embedded at the Interface of Two Piezoelectric Half-Planes
,”
Mech. Mater.
0167-6636,
36
, pp.
999
1006
.
17.
Li
,
X. F.
, 2006, “
Electroelastic Field Induced by Thin Interface Electrodes Between Two Bonded Dissimilar Piezoelectric Ceramics
,”
Electron. J. Differ. Equations
1550-6150,
49
, pp.
526
539
.
18.
Ye
,
R. Q.
, and
He
,
L. H.
, 2001, “
Electric and Stresses Concentrations at the Edge of Parallel Electrodes in Piezoelectric Ceramics
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
6941
6951
.
19.
Chen
,
C. D.
, and
Chue
,
C. H.
, 2003, “
Fracture Mechanics Analysis of a Composite Piezoelectric Strip With an Internal Semi-Infinite Electrode
,”
Theor. Appl. Fract. Mech.
0167-8442,
39
, pp.
291
314
.
20.
Shindo
,
Y.
,
Narita
,
F.
, and
Sosa
,
H.
, 1998, “
Electroelastic Analysis of Piezoelectric Ceramics With Surface Electrodes
,”
Int. J. Eng. Sci.
0020-7225,
36
, pp.
100
1009
.
21.
Yang
,
F.
, 2004, “
Electromechanical Interaction of Linear Piezoelectric Materials With a Surface Electrode
,”
J. Mater. Sci.
0022-2461,
39
, pp.
2811
2820
.
22.
Muskhelishvili
,
N. I.
, 1953,
Singular Integral Equations
,
Noordhoff
,
Groningen, The Netherlands
.
23.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
, 1965,
Tables of Integrals, Series and Products
,
Academic
,
New York
.
24.
Fulton
,
C. C.
, and
Gao
,
H. J.
, 1997, “
Electrical Nonlinearity in Fracture of Piezoelectric Ceramics
,”
Appl. Mech. Rev.
0003-6900,
50
, pp.
1
7
.
You do not currently have access to this content.