In this work, a novel procedure to solve the Navier-Stokes equations in the vorticity-velocity formulation is presented. The vorticity transport equation is solved as an ordinary differential equation (ODE) problem on each node of the spatial discretization. Evaluation of the right-hand side of the ODE system is computed from the spatial solution for the velocity field provided by a new partial differential equation expression called the kinematic Laplacian equation (KLE). This complete decoupling of the two variables in a vorticity-in-time/velocity-in-space split algorithm reduces the number of unknowns to solve in the time-integration process and also favors the use of advanced ODE algorithms, enhancing the efficiency and robustness of time integration. The issue of the imposition of vorticity boundary conditions is addressed, and details of the implementation of the KLE by isoparametric finite element discretization are given. Validation results of the KLE method applied to the study of the classical case of a circular cylinder in impulsive-started pure-translational steady motion are presented. The problem is solved at several Reynolds numbers in the range 5<Re<180 comparing numerical results with experimental measurements and flow visualization plates. Finally, a recent result from a study on periodic vortex-array structures produced in the wake of forced-oscillating cylinders is included.

1.
Quartapelle
,
L.
, 1993,
Numerical Solution of the Incompressible Navier-Stokes Equations
,
Birkäuser
, Basel, Switzerland, Chap. 4.
2.
Clercx
,
H. J. H.
, 1997, “
A Spectral Solver for the Navier-Stokes Equations in the Velocity-Vorticity Formulation for Flows With Two Nonperiodic Directions
,”
J. Comput. Phys.
0021-9991,
137
, pp.
186
211
.
3.
Speziale
,
C. G.
, 1987, “
On the Advantages of the Velocity-Vorticity Formulation of the Equations of Fluid Dynamics
,”
J. Comput. Phys.
0021-9991,
73
, pp.
476
480
.
4.
Fasel
,
H.
, 1976, “
Investigation of the Stability of Boundary Layers by a Finite Difference Model of the Navier-Stokes Equations
,”
J. Fluid Mech.
0022-1120,
78
, pp.
355
383
.
5.
Dennis
,
S. C. R.
,
Ingham
,
D. B.
, and
Cook
,
R. N.
, 1979, “
Finite Difference Methods for Calculating Steady Incompressible Flows in Three Dimensions
,”
J. Comput. Phys.
0021-9991,
33
, pp.
325
339
.
6.
Gatski
,
T. B.
,
Grosh
,
C. E.
, and
Rose
,
M. E.
, 1989, “
The Numerical Solution of the Navier-Stokes Equations for 3-Dimensional Unsteady Incompressible Flows by Compact Schemes
,”
J. Comput. Phys.
0021-9991,
82
, pp.
298
329
.
7.
Napolitano
,
M.
, and
Pascazio
,
G.
, 1991, “
A Numerical Method for the Vorticity-Velocity Navier-Stokes Equations in Two and Three Dimensions
,”
Comput. Fluids
0045-7930,
19
, pp.
489
495
.
8.
Guj
,
G.
, and
Stella
,
F.
, 1993, “
A Vorticity-Velocity Method for the Numerical Solution of 3D Incompressible Flows
,”
J. Comput. Phys.
0021-9991,
106
, pp.
286
298
.
9.
Guevremont
,
G.
,
Habashi
,
W. G.
,
Kotiuga
,
P. L.
, and
Hafez
,
M. M.
, 1993, “
Finite Element Solution of the 3D Compressible Navier-Stokes Equations by a Velocity-Vorticity Method
,”
J. Comput. Phys.
0021-9991,
107
, pp.
176
187
.
10.
Davies
,
C.
, and
Carpenter
,
P. W.
, 2001, “
A Novel Velocity-Vorticity Formulation of the Navier-Stokes Equations With Applications to Boundary Layer Disturbance Evolution
,”
J. Comput. Phys.
0021-9991,
172
, pp.
119
165
.
11.
Lo
,
D. C.
, and
Young
,
D. L.
, 2004, “
Arbitrary Lagrangian-Eulerian Finite Element Analysis of Free Surface Flow Using a Velocity-Vorticity Formulation
,”
J. Comput. Phys.
0021-9991,
195
, pp.
175
201
.
12.
Anderson
,
C. R.
, 1988, “
Observations on Vorticity Creation Boundary Conditions
,”
Mathematical Aspects of Vortex Dynamics
,
R. E.
Caflisch
, ed.,
SIAM
, Philadelphia, pp.
144
159
.
13.
Chorin
,
A. J.
, 1973, “
Numerical Study of Slightly Viscous Flow
,”
J. Fluid Mech.
0022-1120,
57
, pp.
785
796
.
14.
Chorin
,
A. J.
, 1978, “
Vortex Sheet Approximation of Boundary Layers
,”
J. Comput. Phys.
0021-9991,
27
, pp.
428
442
.
15.
Quartapelle
,
L.
, and
Valz-Gris
,
F.
, 1981, “
Projection Conditions on the Vorticity in Viscous Incompressible Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
1
, pp.
129
144
.
16.
Quartapelle
,
L.
, 1981, “
Vorticity Conditioning in the Computation of Two-Dimensional Viscous Flows
,”
J. Comput. Phys.
0021-9991,
40
, pp.
453
477
.
17.
Batchelor
,
G. K.
, 2000,
An Introduction to Fluid Dynamics
,
Cambridge University Press
, Cambridge, UK.
18.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 2002,
Numerical Recipes in C
, 2nd ed.,
Cambridge University Press
, Cambridge, UK.
19.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice–Hall
, Englewood Cliffs, NJ.
20.
Ponta
,
F. L.
, and
Jacovkis
,
P. M.
, 2001, “
A Vortex Model for Darrieus Turbine Using Finite Element Techniques
,”
Renewable Energy
0960-1481,
24
, pp.
1
18
.
21.
Ponta
,
F. L.
, and
Jacovkis
,
P. M.
, 2003, “
Constant-Curl Laplacian Equation: A New Approach for the Analysis of Flows Around Bodies
,”
Comput. Fluids
0045-7930,
32
, pp.
975
994
.
22.
Van Dyke
,
M.
, 1982,
An Album of Fluid Motion
,
Parabolic Press
, Stanford, CA.
23.
Taneda
,
S.
, 1956, “
Experimental Investigation of the Wakes Behind Cylinders and Plates at Low Reynolds Numbers
,”
J. Phys. Soc. Jpn.
0031-9015,
11
, pp.
302
307
.
24.
Williamson
,
C. H. K.
, 1989, “
Oblique and Parallel Mode of Vortex Shedding in the Wake of a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
206
, pp.
579
627
.
You do not currently have access to this content.