Two challenges in mechanics of granular media are taken up in this paper: (i) development of adequate numerical discrete element models of topologically disordered granular assemblies, and (ii) calculation of macroscopic elastic moduli of such materials using effective medium theories. Consideration of the first one leads to an adaptation of a spring-network (Kirkwood) model of solid-state physics to disordered systems, which is developed in the context of planar Delaunay networks. The model employs two linear springs: a normal one along an edge connecting two neighboring vertices (grain centers) which accounts for normal interactions between the grains, as well as an angular one which accounts for angle changes between two edges incident onto the same vertex; edges remain straight and grain rotations do not appear. This model is then used to predict elastic moduli of two-phase granular materials—random mixtures of soft and stiff grains —for high coordination numbers. It is found here that an effective Poisson’s ratio, νeff, of such a mixture is a convex function of the volume fraction, so that νeff may become negative when the individual Poisson’s ratios of both phases are both positive. Additionally, the usefulness of three effective medium theories—perfect disks, symmetric ellipses, and asymmetric ellipses—is tested.

1.
Alzebdeh, K., 1994, “Computational Methods in Stochastic Micromechanics of Heterogeneous Solids,” Ph.D. thesis, Michigan State University.
2.
Bathurst
R. J.
, and
Rothenburg
L.
,
1988
, “
Micromechanical Aspects of Isotropic Granular Assemblies With Linear Contact Interactions
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
55
, pp.
17
23
.
3.
Bathurst
R. J.
, and
Rothenburg
L.
,
1989
, “
Note on a random isotropic granular material with negative Poisson’s ratio
,”
Intl. J. Engng. Sci
., Vol.
26
, pp.
373
383
.
4.
Budiansky
B.
,
1965
, “
On the elastic moduli of some heterogeneous materials
,”
J. Mech. Phys. Solids
, Vol.
13
, pp.
223
227
.
5.
Cundall
P. A.
, and
Strack
O. D. L.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
, Vol.
29
, No.
1
, pp.
47
65
.
6.
Day
A. R.
,
Snyder
K. A.
,
Garboczi
E. J.
, and
Thorpe
M. F.
,
1992
, “
The elastic moduli of a sheet containing circular holes
,”
J. Mech. Phys. Solids
, Vol.
40
, pp.
1031
1051
.
7.
Ferrari, M., Granik, V. T., Imam, A., and Nadeau, J. C., eds., 1997, Advances in Doublet Mechanics, Springer-Verlag, New York.
8.
Grah
M.
,
Alzebdeh
K.
,
Sheng
P. Y.
,
Vaudin
M. D.
,
Bowman
K. J.
, and
Ostoja-Starzewski
M.
,
1996
, “
Brittle intergranular failure in 2D microstructures: experiments and computer simulations
,”
Acta Mater
., Vol.
44
, No.
10
, pp.
4003
4018
.
9.
Hansen
J. C.
,
Chien
S.
,
Skalak
R.
, and
Hoger
A.
,
1996
, “
An elastic network model based on the structure of the red blood cell membrane skeleton
,”
Biophys. J.
, Vol.
70
, pp.
146
166
.
10.
Hill
R.
,
1965
, “
A self-consistent mechanics of composite materials
,”
J. Mech. Phys. Solids
, Vol.
13
, pp.
213
222
.
11.
Jagota, A., and Benison, S. J., 1994, “Spring-network and finite-element models for elasticity and fracture,” Non-linearity and Breakdown in Soft Condensed Matter, K. K. Bardhan, B. K. Chakrabarti, and A. Hansen, eds., Lecture Notes in Physics, Vol. 437, pp. 186–201, Springer-Verlag, New York.
12.
Keating
P. N.
,
1966
, “
Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure
,”
Phys. Rev.
, Vol.
145
, pp.
637
645
.
13.
Kirkwood
J. G.
,
1939
, “
The skeletal modes of vibration of long chain molecules
,”
J. Chem. Phys.
, Vol.
7
, pp.
506
509
.
14.
Ostoja-Starzewski
M.
,
1993
, “
Random fields and processes in mechanics of granular materials
,”
Mech. Mater.
, Vol.
16
, No.
1–2
. pp.
55
64
.
15.
Ostoja-Starzewski
M.
, and
Wang
C.
,
1989
, “
Linear elasticity of planar Delaunay networks: Random field characterization of effective moduli
,”
Acta Mech.
, Vol.
80
, pp.
61
80
.
16.
Ostoja-Starzewski
M.
, and
Wang
C.
,
1990
, “
Lineal elasticity of planar Delaunay networks, ll: Voigt and Reuss bounds, and modification for centroids
,”
Acta Mech.
, Vol.
84
, pp.
47
61
.
17.
Ostoja-Starzewski
M.
,
Alzebdeh
K.
, and
Jasiuk
I.
,
1995
, “
Linear elasticity of planar Delaunay networks—III: Self-consistent approximations
,”
Acta Mech.
, Vol.
110
, pp.
57
72
.
18.
Ostoja-Starzewski
M.
,
Sheng
P. Y.
, and
Alzebdeh
K.
,
1996
, “
Spring network models in elasticity and fracture of composites and polycrystals
,”
Camput. Matet; Sci.
, Vol.
7
, Nos.
1 and 2
, pp.
82
93
.
19.
Rothenburg, L., 1994, private communication.
20.
Satake, M., 1978, “Constitution of mechanics of granular materials through graph representation,” Theor. Appl. Mech., Vol. 26, University of Tokyo Press, Tokyo, Japan.
21.
Shen, H. H., Satake, M., Mehrabadi, M., Chang, C. S., Campbell, eds., 1992, Advances in Micromechanics of Granular Materials, Stud. Appl. Mech., Vol. 31, Elsevier, New York.
22.
Stoyan, D., Kendall, W. S., and Mecke, J., 1987, Stochastic Geometry and its Applications, John Wiley and Sons, New York.
23.
Thorpe
M. F.
, and
Sen
P. N.
,
1985
, “
Elastic moduli of two-dimensional composite continua with elliptical inclusions
,”
J. Acoust. Soc. Am.
, Vol.
77
, No.
5
, pp.
1674
1680
.
24.
Thorpe
M. F.
, and
Jasiuk
I.
,
1992
, “
New Results in the Theory of Elasticity of Two’-Dimensional Composites
,”
Proc. Soc. Lond.
, Vol.
A438
, pp.
531
544
.
25.
Woz´niak, C., 1970, Surface Lattice Structures, PWN-Polish Sci. Publ., Warsaw (in Polish).
This content is only available via PDF.
You do not currently have access to this content.