The scattering of waves by a flaw (cavity or inclusion) that is embedded in an elastic half space at a finite depth below the interface with a fluid half space is studied using the T-matrix approach. Expressions are derived for the scattered fields generated in the fluid and solid half spaces as well as the asymptotic form of the field in the fluid at a large distance from the interface. Numerical results are presented for spherical voids and steel inclusions embedded in epoxy as well as oblate spheroidal voids in a metal for various flaw depths, scattering geometries, and frequency of the incident wave. The results obtained by keeping different orders of multiple scattering between the flaw and the interface are critically discussed.

This content is only available via PDF.
You do not currently have access to this content.