Creep and recovery data are presented for combined tension and torsion of 2618 Aluminum at 200°C (392°F). These data are represented by a mechanical-mathematical model in which the strain is resolved into five components: elastic, time-independent plastic, recoverable viscoelastic, time-dependent nonrecoverable viscous (positive) and time-dependent nonrecoverable viscous (negative). By using recovery data the recoverable component is separated from the nonrecoverable creep strain. Results show that the time-dependence may be represented by a power of time (independent of stress) and that the time-dependence of the recoverable and nonrecoverable strains are the same. It is also shown that the proportion of recoverable versus nonrecoverable strain may be taken to be independent of stress. The mathematical expressions developed describe quite well the creep and recovery under tension and/or torsion. Results are presented in a form which may prove suitable for predicting creep or relaxation under variable input using the modified superposition simplification of the multiple integral representation for the recoverable strain component and strain hardening for the nonrecoverable component. Comparison between predicted strain or stress and actual tests under different variable stress or strain histories will be presented in subsequent papers.

This content is only available via PDF.
You do not currently have access to this content.