Ultrahigh molecular weight polyethylene (UHMWPE) remains the polymer bearing of choice for total joint replacements (TJR) [1]. However, the long-term performance of this polymer has been limited by in vivo wear: UHMWPE wear debris generated in the joint space can travel into the periprosthetic bone, initiating osteolysis and implant loosening [2]. Crosslinked UHMWPE (through ionizing radiation) has demonstrated increased wear resistance [3], but at the cost of reduced fatigue crack propagation and fracture resistance [4]. Additionally, radiation processes can release free radicals which, when not eliminated through thermal treatment, can increase UHMWPE susceptibility to oxidation and mechanical embrittlement [5]. Such tradeoffs present clinical concerns when implant designs incorporate stress concentrations that experience elevated stresses under loading. These compromises are evaluated through the failure analysis of several crosslinked UHMWPE retrievals that fractured in vivo.
- Bioengineering Division
Designing for Crosslinked UHMWPE Implants: Clinical Consequences of Stress Concentrations
Ansari, F, Patten, E, Chang, J, Chou, S, Mehdizadeh, A, Kury, M, Huddleston, J, III, Jewett, B, Mickelson, D, Kim, H, Ries, M, & Pruitt, L. "Designing for Crosslinked UHMWPE Implants: Clinical Consequences of Stress Concentrations." Proceedings of the ASME 2013 Summer Bioengineering Conference. Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions. Sunriver, Oregon, USA. June 26–29, 2013. V01BT38A002. ASME. https://doi.org/10.1115/SBC2013-14301
Download citation file: