Traumatic Brain Injury (TBI) has been the termed the “signature injury” in wounded soldiers in recent military operations [1]. Evidence has shown a strong association between TBI and blast loading to the head due to exposure to explosive events [2, 3]. Head injury mechanisms in a primary blast environment remain elusive and are the subject of much speculation and hypotheses. However, brain injury mechanisms have traditionally been attributed to either a direct impact or a rapid head acceleration or deceleration. Extensive research has been performed regarding the effects of blunt trauma and inertial loading on head injuries [4, 5]. Direct impacts to the head can largely be described based on linear acceleration measurements that correlate to skull fracture and focal brain injuries [6]. Computational head modeling of blunt impact events has shown that the linear acceleration response correlates well with increases in brain pressure [7]. Intracranial pressure, therefore, has been one of the major quantities investigated for correlation to blast induced TBI injury mechanisms [8–14].

This content is only available via PDF.
You do not currently have access to this content.