Computational fluid dynamics (CFD) study of the behavior of red blood cells (RBCs) in flow provides us informative insight into the mechanics of blood flow in microvessels. However, the size of computational domain is limited due to computational expense. Recently, we proposed a graphics processing unit (GPU) computing method for patient-specific pulmonary airflow simulations (Miki et al., in press). In this study, we extend this method to micro-scale blood flow simulations, where a lattice Boltzmann method (LBM) of fluid mechanics is coupled with a finite element method (FEM) of membrane mechanics by an immersed boundary method (IBM). We also present validation and performance of our method for micro-scale blood flow simulations.

This content is only available via PDF.
You do not currently have access to this content.