A continuing goal in biomaterials research is to understand how cell adhesion to the surrounding materials and/or matrix regulates cell behavior in 3D. Advanced understanding of these processes may aid the development of synthetic biomaterials for tissue engineering applications, as well as to help understand basic cellular processes. The majority of past work, however, has focused on cell behavior atop 2D substrates that poorly recapitulate the 3D in vivo microenvironment [1]. Recent reports have suggested that within 3D hydrogels, encapsulated human mesenchymal stem cell (hMSC) fate is not determined by cell morphology or matrix mechanics alone [2], but by gel-structure dependent traction force generation [3]. As hMSCs represent a promising cell source for regenerative applications [4], it is critical to better develop our understanding of the link between cell fate and microenvironmental physical and biochemical cues in 3D, with a focus on the range of materials used in regenerative medicine. In the current work, hMSCs were encapsulated within degradable and non-degradable hyaluronic acid (HA) hydrogels of similar elastic moduli to assess the influence of hydrogel remodeling and cellular traction generation on differentiation lineage specification.
Skip Nav Destination
ASME 2012 Summer Bioengineering Conference
June 20–23, 2012
Fajardo, Puerto Rico, USA
Conference Sponsors:
- Bioengineering Division
ISBN:
978-0-7918-4480-9
PROCEEDINGS PAPER
Stem Cell Fate Within 3D Hydrogels is Mediated by Network Structure-Dependent Traction Generation
Sudhir Khetan,
Sudhir Khetan
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Wesley R. Legant,
Wesley R. Legant
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Christopher S. Chen,
Christopher S. Chen
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Jason A. Burdick
Jason A. Burdick
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Sudhir Khetan
University of Pennsylvania, Philadelphia, PA
Wesley R. Legant
University of Pennsylvania, Philadelphia, PA
Christopher S. Chen
University of Pennsylvania, Philadelphia, PA
Jason A. Burdick
University of Pennsylvania, Philadelphia, PA
Paper No:
SBC2012-80277, pp. 527-528; 2 pages
Published Online:
July 19, 2013
Citation
Khetan, S, Legant, WR, Chen, CS, & Burdick, JA. "Stem Cell Fate Within 3D Hydrogels is Mediated by Network Structure-Dependent Traction Generation." Proceedings of the ASME 2012 Summer Bioengineering Conference. ASME 2012 Summer Bioengineering Conference, Parts A and B. Fajardo, Puerto Rico, USA. June 20–23, 2012. pp. 527-528. ASME. https://doi.org/10.1115/SBC2012-80277
Download citation file:
6
Views
0
Citations
Related Proceedings Papers
Related Articles
A Wireless, Passive pH Sensor Based on Magnetic Higher-Order Harmonic Fields
J. Med. Devices (June,2009)
Static and Cyclic Mechanical Loading of Mesenchymal Stem Cells on Elastomeric, Electrospun Polyurethane Meshes
J Biomech Eng (July,2015)
Bioactive Magnetoelastic Materials as Coatings for Implantable Biomaterials
J. Med. Devices (June,2009)
Related Chapters
Applications of Macro-, Micro- and Nano-Biomaterials Prepared using Biopolymers
Biopolymers Based Micro- and Nano-Materials
Conclusion
Biopolymers Based Micro- and Nano-Materials
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies