Microscale technologies are a powerful tool in many biological and chemical applications, as they utilize only small reagent volumes. Microfluidics is especially well compatible with biological materials and applications, for example protein crystallization, high throughput assay analysis, and various cell studies. In that context, non-linear gradients of particles and molecules as well as efficient mixing of the components inside the lab-on-a-chip are crucial for many experimental studies: testing of and analyzing biological responses to different analyte concentration levels, studying the native cell microenvironment or cellular responses during different growth and proliferation stages. Thus, a microfluidic approach that allows for generation of different concentration gradients and specifically exponential gradients emerges as a helpful technology, and is also compatible with cells.

This content is only available via PDF.
You do not currently have access to this content.