Bone loss is a critical health problem of astronauts in long-term space missions. A growing number of evidence has pointed out bone fluid flow as a critical regulator in mechanotransductive signaling and bone adaptation. Intramedullary pressure (ImP) is a key mediator for bone fluid flow initiation and it influences the osteogenic signals within the skeleton. The potential ImP-induced bone fluid flow then triggers bone adaptation [1]. Previous in vivo study has demonstrated that ImP induced by oscillatory electrical stimulations can effectively mitigate disuse osteopenia in a frequency-dependent manner in a disuse rat model [2, 3]. In order to develop the translational potentials of ImP, a non-invasive intervention with direct fluid flow coupling is necessary to develop new treatments for microgravity-induced osteopenia/osteoporosis.

This content is only available via PDF.
You do not currently have access to this content.