Accurate prediction of knee joint contact loading during gait is important for understanding knee pathology and development of suitable clinical interventions. While many researchers have modeled the knee contact loads during level walking, these predictions have ranged from 3.4 [1] to 7 [2] times body weight. Validation of contact loads is difficult; the joint contact load depends not only on readily obtainable external kinematics and reaction forces, but also on the forces generated by muscle and other soft tissues. Recently, an instrumented tibial implant, capable of telemetrically reporting the six degree-of-freedom loading environment of the tibial plateau, was used to tune and validate an EMG-driven model of the lower extremity [3]. Recognizing the value of these in vivo data, and the limitations of existing knee models, these researchers devised the Grand Challenge Competitions to Predict In Vivo Knee Loads.

This content is only available via PDF.
You do not currently have access to this content.