Human intervertebral disc (IVD) degeneration is accompanied by elevated levels of pro-inflammatory cytokines, particularly IL-1β and TNF-α [1–3]. Cytokine secretion by disc cells increases catabolic breakdown of the tissue, resulting in a positive feedback of disc integrity loss and further inflammation [4–6]. A recent study by our group has shown that severity of degeneration in an injury model can influence the therapeutic effect of cell based repair, such as treatment with mesenchymal stem cells (MSCs) [7]. The goal of this study is to measure the response of MSCs to inflammatory challenge, and to compare this response to that of differentiated disc cells from the nucleus pulposus (NP), annulus fibrosis (AF) and end plate (EP). In this study, we investigated the effects of lipopolysaccharide (LPS) on intervertebral disc cells and MSCs viability, pro-inflammatory cytokine expression and extracellular matrix (ECM) expression. LPS is an endotoxin that induces strong immune responses in animal tissue and hence widely used as a pre-clinical model of inflammation. This approach provides an opportunity to study broad aspects of the physiological inflammatory process observed in degenerative disc disease.

This content is only available via PDF.
You do not currently have access to this content.