Few elastographic methods handle both anisotropy and inhomogeneity. Much of the focus has been on inhomogeneous materials that are locally isotropic. However, most load-bearing tissues (heart, ligament, blood vessels) are highly anisotropic, and the underlying structure is distinct and essential for function. With disease or damage, this structure is altered, and hence the potential for an elastographic tool that identifies regional changes in anisotropy is high. In this study we present a generalized anisotropic inverse mechanics (GAIM) method that is applicable to soft tissues and demonstrate its performance on tissue equivalents which serve as a convenient test case due to their inhomogeneity and the ease of pre-specifying the fiber alignment pattern.

This content is only available via PDF.
You do not currently have access to this content.