The loss of functional muscle as a product of genetic disease, traumatic injury, or surgical excisions results in a physiological deficiency that still remains without an effective clinical treatment [1]. Engineering of functional tissue in vitro for replacement in vivo might pose as a potential remedy for this clinical demand. By approaching tissue engineering from the bottom-up, geometrically directing myoblast growth provides a means for constructing tissue replacements cell-by-cell versus the traditional decellularized construct that remains limited by its size and ability to deliver cellular nutrients. Furthermore, geometrically controlling the growth of myoblasts allows for direct manipulation of the structural and mechanical properties inherent to muscular tissue.

This content is only available via PDF.
You do not currently have access to this content.