In this paper, we discuss the results arising from using a viscoelastic, axisymmetric finite-element model [1] to study the aspiration of neutrophils into a tapered micropipette [2]. The key feature of our model is that we take into account the experimentally observed temporal variations in the rheological properties of deforming neutrophils [3]. We show that our model successfully reproduces the equilibrium state reached by a neutrophil subjected to a constant step pressure [2]. We are also able to extract quantitative information about the rate at which the rheological properties of the neutrophil change. Such information may be difficult to obtain directly from the experiments themselves. Thus, our approach illustrates the usefulness of computational modeling as a complement to experiments.

This content is only available via PDF.
You do not currently have access to this content.