Valve and piping systems in rocket propulsion systems and testing facilities are constantly subject to dynamic events resulting from the timing of valve motion leading to unsteady fluctuations in pressure and mass flow. Such events can also be accompanied by cavitation, resonance, system vibration leading to catastrophic failure. High-fidelity dynamic computational simulations of valve operation can yield important information of valve response to varying flow conditions. Prediction of transient behavior related to valve motion can serve as guidelines for valve scheduling, which is of crucial importance in engine operation and testing. Feed components operating in cryogenic regimes can also experience cavitation based instabilities leading to large scale shedding of vapor clouds and pressure oscillations. In this paper, we present simulations of the diverse unsteady phenomena related to valve and feed systems that include valve stall, valve timing studies as well as cavitation instabilities in components utilized in the test loop.

This content is only available via PDF.
You do not currently have access to this content.