A supplemental main steam condenser cooling system is under development, which utilizes a phase change material (PCM). This PCM rejects heat to the cool atmosphere at night until it is fully frozen. The frozen PCM is available for condenser cooling during peak daytime electric demand. Three calcium chloride hexahydrate (CaCl2·6H2O)-based PCMs were selected for development after being characterized using differential scanning calorimetry (DSC). Additives to minimize supercooling and phase separation have demonstrated good performance after long and short-term thermal cycling. Corrosion testing under both isothermal and cycling conditions was conducted to determine long-term compatibility between several common metals and the selected PCMs. Several metals were demonstrated to have acceptably low corrosion rates for long-term operation, despite continual immersion in the selected hydrated salts. A system optimization model was developed, which utilizes a 3D modeling approach called the Layered Thermal Resistance (LTR) model. This model efficiently models the nonlinear, transient solidification process by applying analytic equations to layers of PCM. Good agreement was found between this model and more traditional computational fluid dynamics (CFD) modeling. Next phases of the work includes prototype testing and a techno-economic analysis of the technology.

This content is only available via PDF.
You do not currently have access to this content.