About 75% of all formations drilled worldwide are shale formations and 90% of all wellbore instability problems occur in shale formations. This increases the overall cost of drilling. Therefore, drilling through shale formations, which have nanosized pores with nanodarcy permeability still need better solutions since the additives used in the conventional drilling fluids are too large to plug them. One of the solutions to drilling problems can be adjusting drilling fluid properties by adding nanoparticles. Drilling mud with nanoparticles can physically plug nanosized pores in shale formations and thus reduce the shale permeability, which results in reducing the pressure transmission and improving wellbore stability. Furthermore, the drilling fluid with nanoparticles, creates a very thin, low permeability filter cake resulting in the reduction of the filtrate penetration into the shale. This thin filter cake implies high potential for reducing the differential pressure sticking. In addition, borehole problems such as too high drag and torque can be reduced by adding nanoparticles to drilling fluids.

This paper presents the results of laboratory examination of the influence of commercially available nanoparticles of SiO2 (dry SiO2 and water-based dispersion of 30 wt% of silica), and TiO2 (water-based dispersion of 40 wt% of titania) in concentrations of 0.5 wt% and 1 wt% on the properties of water-based fluids. Special emphasis is put on the determination of lubricating properties of the water-based drilling fluids. Nanoparticles added to the base mud without any lubricant do not improve its lubricity performance, regardless of their concentrations and type. However, by adding 0.5 wt% SiO2-disp to the base mud with lubricant, its lubricity coefficient is reduced by 4.6%, and by adding 1 wt% TiO2-disp to the base mud with lubricant, its lubricity coefficient is reduced by 14.3%.

This content is only available via PDF.
You do not currently have access to this content.