The purpose of the present study is to fundamentally investigate dynamic hull girder response due to slamming load. A series of time domain FE-simulation is carried out using a non-uniform finite element beam model of a 8000 TEU container ship where slamming load is applied at the bottom of the bow. The ship is modeled by elaso-plastic material with equivalent ultimate strength and strain rate effect is considered. Hull-girder vertical bending moment as well as deformation modes, bending stress are investigated by varying the time duration of the slamming load which is modeled by sinusoidal impulse. In order to obtain post vibration after the first slamming load explicit analysis is adopted instead of implicit analysis with considering gravity and buoyancy. Buoyancy is modeled by inelastic spring elements. It is found from the present study hull girder vertical bending moment is dependent on time duration of slamming load. Especially if time duration is smaller than natural period response bending moment may become smaller than applied bending moment. Moreover effect of inertia at fore and aft is also investigated in detail.

This content is only available via PDF.
You do not currently have access to this content.