An advanced model for predicting a two-dimensional coupled cross-flow and in-line vortex-induced vibration (VIV) of a flexibly-mounted circular cylinder in a uniform flow is proposed and investigated. Attention is placed on a systematic extraction of variable hydrodynamics properties associated with a bi-directional fluid-structure interaction system. The governing equations of motion are based on double Duffing-van der Pol (structural-wake) oscillators with the two structural equations containing cubic and quadratic nonlinear terms. The cubic nonlinearities capture the geometrical coupling of cross-flow/in-line displacements excited by hydrodynamic lift/drag forces whereas the quadratic nonlinearities allow fluid-structure interactions. The combined analytical and numerical solutions of the proposed model are established. By varying flow velocities in numerical simulations, the derived low-order model qualitatively captures several key VIV characteristics of coupled in-line/cross-flow oscillations. By making use of a newly-derived empirical formula, the predicted maximum cross-flow/in-line VIV amplitudes and associated lock-in ranges compare well with several experimental results for cylinders with low/high mass or damping ratios. Moreover, such important hydrodynamic properties as VIV-induced mean drag, added mass, excitation and damping terms can be systematically determined via the proposed model and compared well with some experimental results in the literature.

This content is only available via PDF.
You do not currently have access to this content.