LargE Admissibility Perturbations (LEAP) is a general methodology, which solves redesign problems of complex structures with, among others, forced response amplitude constraints. In previous work, two LEAP algorithms, namely the Incremental Method (IM) and the Direct Method (DM), were developed. A powerful feature of LEAP is the general perturbation equations derived in terms of normal modes, the selection of which is a determinant factor for a successful redesign. The normal modes of a structure may be categorized as stretching, bending, torsional, and mixed modes and grouped into cognate spaces. In the context of redesign by LEAP, the physical interpretation of a mode-to-response cognate space lies in the fact that a mode from one space barely affects change in a mode from another space. Perturbation equations require computation of many perturbation terms corresponding to individual modes. Identifying modes with negligible contribution to the change in forced response amplitude eliminates a priori computation of numerous perturbation terms. Two methods of determining mode-to-response cognate space, one for IM and one for DM, are presented and compared. Trade-off between computational time and accuracy is assessed in order to provide practical guidelines to the designer. The developed LEAP redesign algorithms are applied to the redesign of a simple cantilever beam and a complex offshore tower.

This content is only available via PDF.
You do not currently have access to this content.