Vibrations in Subsea Production Systems are well recognized as a concern in the subsea industry. To identify the severity of the vibrations and potential accumulated fatigue damage, subsea vibrations need to be measured with great accuracy. Currently, accurate detection and subsea measurements are often performed by utilizing accelerometers, which have to be connected to the structure by ROV or a diver.

ROV video analysis provides an alternative solution. Video analyses are widely utilized across different applications. With the increased quality of a HD camera on ROV, the accessibility of such measurements is an attractive substitute to other techniques.

As a part of on-shore mechanical testing on a full assembled XT in St John’s Canada, a flowloop on a water injection XT was subjected to free vibrations. The vibrations were filmed using a commercial HD camera placed on a tripod.

This test was done to validate data generated using video processing in which pipe vibration of an operating subsea XT was filmed using an ROV camera.

A study that aimed to quantify the video processing accuracy, limitations and provide general guidance was conducted. For the onshore test filmed with a tripod the results of video analyses were compared with the measurements obtained by means of accelerometers. For the video of an operating subsea XT filmed by an ROV, the obtained vibration frequency and direction was compared with the free mechanical vibration obtained by a FEM model.

The results obtained by means of the video analysis matched well with the accelerometer data. A high accuracy was reached, as vibration displacements as low as 20% of the pixel were accurately determined in the video analysis. With respect to detection frequencies, the upper cut-off frequency was around 15 Hz determined by the video framerate. The video analysis utilizing ROV videos was found to be applicable for low frequency vibration measurements, opening the opportunity for easier and more cost effective vibration detection and monitoring. The method is also reliable for subsea application in which the camera is placed on an ROV and is thus not affected by ROV movements, subsea lighting condition and moving ocean debris.

This content is only available via PDF.
You do not currently have access to this content.