Abstract

The second order force of a floating structure can be expressed in terms of a time independent quadratic transfer functions along with the incident wave elevation, through which it is possible to evaluate the second order wave exciting forces in the frequency domain. Newman’s approximation has been widely applied in approximating the elements of the quadratic transfer function matrix while numerically evaluating the second order wave induced force. Through Newman’s approximation, the off-diagonal elements can be numerically approximated with the diagonal elements and thus the numerical calculation efficiency can be enhanced. Newman’s approximation assumes that the off-diagonal elements do not change significantly with the wave frequency and that hydrodynamic phenomenon regarding the low difference frequency are usually of interest. However, it is obviously less satisfying when an element that is close to the diagonal line in the quadratic transfer function matrix shows an extremum if the corresponding wave frequency is close to the natural frequency of the certain motion. In this paper, the full derivation and expression of the second order wave forces and moments applied to a floating structure have been presented, through which the numerical results of the quadratic transfer function matrix including the diagonal and the off-diagonal elements will be illustrated. This work will present the basis of numerically evaluating the second order forces in the frequency domain. The comparisons among various approximations regarding the second order forces in deep water will also be presented as a meaningful reference.

This content is only available via PDF.
You do not currently have access to this content.