Vortex-induced vibration (VIV) excited by current is a major contributor to the fatigue accumulation of marine risers. For deepwater operations, several risers are often arranged together in an array configuration. In this study, a set of four identical flexible pipes of a rectangular arrangement were tested in a water tunnel. By comparing the dynamic responses of a pipe in an array with that of a single isolated pipe, the effects of the current speed and the center-to-center distance between the up-stream and downstream pipes on their dynamic responses were investigated. Fatigue damages accumulated on each pipe in an array was calculated and a factor, termed “fatigue damage amplification factor”, was defined as a ratio between the fatigue damage rate of pipe in an array and the fatigue damage rate of a single pipe at a same current condition. The results showed that for bare pipes (i.e., without helical strakes), the downstream pipes in an array configuration may have larger dynamic responses and fatigue damage rates than those of a single pipe; and, it is not always conservative to assume that the fatigue damage rate estimated for a single pipe can be used to represent the fatigue damage rates of pipes in an array. This preliminary study provided some meaningful results for the design, analysis and operation of marine riser arrays.

This content is only available via PDF.
You do not currently have access to this content.