The process of ice-structure interaction is a complex problem which is influenced by the properties of both ice and the structure. In this paper, the material point method (MPM) is introduced to simulate the interaction between an ice sheet and a cylinder structure. MPM is efficient in solving history dependent and large deformation problems and has shown advantage in hyper-velocity impact and landslide issues, etc..

The constitutive relation of ice is based on elasto-viscous-plastic model with the Drucker-Pragers yield criterion. Ice follows the Maxwell elasto-viscous model before the yield criterion is reached and fails when the plastic strain surpasses the failure strain. Meanwhile, the constitutive model used in this work considers the effect of the Young’s modulus, Poisson’s ratio, density, temperature, cohesive force and internal friction angle of ice.

A series of simulations are conducted and the results are in accord with existing theories. According to the comparison, the influences of ice temperature and penetration speed of the structure on the global ice load are testified. The numerical tests have proven the feasibility of MPM in simulating the interaction between an ice sheet and a cylinder structure. Future work in ice-structure interaction problems with MPM is also discussed.

This content is only available via PDF.
You do not currently have access to this content.