Integrating an array of buoys type converters with a flexible runway can be a viable option for cost-sharing between wave energy capturing devices and ocean space utilization structures, and thus enhance the cost-effectiveness of wave energy utilization. In this study, a configuration of multiple buoys supporting a runway is proposed. Hydrodynamic interactions among the buoys are analyzed using an exact algebraic method based on linear wave theory in the frequency domain. A parametric governing equation of compound wave energy converter referred to as a wave farm is formulated by using Hamilton’s principle which can be discretized by using Galerkin method. The effects of wave condition and the parameters of PTO on the wave energy absorption and dynamic characteristics of a runway are analyzed. This research work is aimed to provide a theoretical guideline for wave energy converters design.

This content is only available via PDF.
You do not currently have access to this content.