In 2007, the Office of Naval Research (ONR) started a technology development program called STLVAST (Small to Large Vessel At-Sea Transfer), in order to develop ‘enabling capabilities’ in the realm of logistic transfer (i.e. stores, equipment, vehicles) between a large transport vessel and a smaller T-craft ship, using a Deep Water Stable Crane (DWSC) spar between them.

In this paper, the equation of motions of the single DWSC spar is initially expressed as the standard state-space model. Then the ODE solver of Matlab is directly employed to obtain the motion responses at each time step. Two levels of approximation of hydrodynamic coefficients are considered in this study. One is the Constant Coefficient Method (CCM), and the other one is the Impulse Response Function (IRF) method, with fluid memory effects considered. WAMIT software is used to calculate the hydrodynamic coefficients, including the added mass, radiation damping, IRF, the first order and second order waves loads transfer functions, etc. The motion response control is achieved by assuming the thrusters can provide the optimal feedback force derived from Linear Quadratic Regulator (LQR) method.

This content is only available via PDF.
You do not currently have access to this content.