A crucial design issue for compliant risers and umbilicals for dynamic applications is termination of the compliant structure to a rigid structure. A practical way to solve this problem is to introduce a properly designed bend stiffener to limit the stresses in the compliant structure due to bending at the supports. The bend stiffener provides a gradually increase of the bending stiffness from the rather small value of the compliant structure to a significantly larger value that can be rigidly connected without compromising the structural integrity of the compliant structure. Hence, the bend stiffener geometry needs to be designed to fulfill the design requirements for extreme as well as fatigue loading conditions for the compliant structure. Furthermore, it is required that the bend stiffener is as short as possible to limit costs, support forces, and enable fabrication and installation. The main focus of this paper is to outline an optimization scheme for bend stiffeners to meet design criteria for extreme loading conditions. Measures to provide an adequate fatigue performance of bend stiffeners are also discussed. The loads on the bend stiffener are governed by effective tension and relative angle close to the support (i.e. direction of effective tension relative to the longitudinal direction of the compliant structure at the support). Combinations of effective tension and relative angle aggregated for all relevant extreme load conditions define the design loads on the bend stiffener. The capacity of the compliant structure is governed by a capacity curve expressing the allowable curvature as function of the effective tension. A general optimization scheme is outlined accounting for a general description of the design loads as well as the capacity curve. The optimization methodology is based on a general purpose optimization algorithm utilizing a tailor made non-linear static finite element solver to describe the response of the bend stiffener and the compliant structure. Non-dimensional design curves are also presented based on a simplified conservative description of the design loads and the capacity. This allows for easy practical sizing of bend stiffeners without the need for sophisticated optimization software.

This content is only available via PDF.
You do not currently have access to this content.