Abstract

Microstructures are critical elements for mechanical metamaterials design and fabrication. Tailoring the internal microscale structural pattern can achieve a much broader range of bulk properties than the constituent materials, thus enabling the metamaterial design with extraordinary properties. Studying the mechanical properties and fabricability of microstructures is critical for understanding metamaterials’ structural design and macroscale performances. This paper categorizes the commonly designed microstructures into two main classes: deterministic implicit function-based and stochastic nature-based designing strategies. The mechanical properties and 3D printability of typical instances within the two classes are studied and experimentally analyzed. Specifically, we investigate the macroscale mechanical properties (e.g., Young’s modulus, shear modulus, bulk modulus, percentage of anisotropy) of microstructures defined with triply periodic minimal surfaces (TPMS), Fourier series-based functions (FSFs), Gaussian random filed-based (GRF), and Voronoi-based microstructures. Asymptotic homogenization is exploited herein to study the macroscale properties of different microstructures, and the manufacturability of the structures is experimentally analyzed and validated on an FDM printer. We summarize the mechanical profiles and manufacturability of these microstructures defined by various principles. The resulting mechanical profiles and manufacturability of microstructures provide a reasonable basis for establishing a microstructure database and shed light on the on-demand structural units generation for metamaterial design and fabrication.

This content is only available via PDF.
You do not currently have access to this content.