To study the effect of geometry on electroosmotic flow in micro channels, we fabricated PDMS-glass microchannels of different designs, which have patterned channels with abrupt contraction of different sizes. Using fluorescent imaging technology, we demonstrated the effect of geometry on the instability of DC driven electroosmotic flow in microfluidic channels. For certain geometry and conductivity of the electrolyte solution (Sodium Bicarbonate), there is a threshold voltage for electroosmotic instability, exhibiting itself as “ripple”. Generally, the factors which affect the threshold voltage include channel width, channel geometry, and electrolyte conductivity. Narrower channel resulted in higher onset voltage. As conductivity of the electrolyte increases, the threshold voltage tends to increase. Early transition to unstable electroosmotic flow in microfluidic channels was observed under relatively low Re.

This content is only available via PDF.
You do not currently have access to this content.